
Time-Independent Perturbation Theory

Assume that for a quantum system there exists a Hamiltonian H◦ for which eigenfunctions {φi}
and eigenvalues {εi} are known. If some other contribution to the total energy is discovered or
created by external means, then another term must be added to the Hamiltonian,

H = H◦ + V. (1)

If the new operator V represents an energy contribution which is small compared to the original
energy εi of state φi, then V is said to be a perturbation to the original Hamiltonian H◦.

The existence of a perturbation leads to a description of the system in terms of a new set of
wavefunctions {ψi}. We can describe the transformation of a particular function φa → ψa in terms
of an operator P , such that

ψa(~r) = P (V )φa(~r). (2)

Presumably, ψa differs only slightly from φa, and that difference can be expressed as a linear
combination of elements of the complete set {ψi},

ψa = φa +
∑

i

ciaφi. (3)

The perturbation operator P can be expanded in a series of terms dependent upon V to some
order. Since V is assumed to be much smaller that H◦ in an operator sense, terms of order V n

should become less significant as n increases. Usually, only effects up to order 2, that is, dependent
upon V 2, need be considered. Thus,

P = 1 + P (1) + P (2) + · · · . (4)

The set of coefficients {cia} is determined by projecting each component

Okψa = |k〉〈k|ψa〉 =
∑

i

cia〈k|i〉|k〉 = ckaφk = cka|k〉, (5)

and
cka = 〈k|ψa〉 = 〈k|P |φa〉. (6)

So, each coefficient is a sum over a series of terms of increasing order in V

cka = δka + 〈k|P (1)|φa〉+ 〈k|P (2)|φa〉+ · · · . (7)

To develop the operator P , begin with the Schrödinger equation

i~
∂

∂t
ψ = Hψ → i~P

∂

∂t
φ = (H◦ + V )Pφ, (8)

where the subscript a is supressed. Using

i~
∂

∂t
φ = H◦φ, (9)

c©2003 W. M. Hetherington 1 27 April 2003



we find that
PH◦ = (H◦ + V )P. (10)

Expanding P ,

(1 + P (1) + P (2) + · · · )H◦ = (H◦ + V )(1 + P (1) + P (2) + · · · ). (11)

Collecting terms of equal order in the perturbation V , we arrive at the set of equations

H◦ = H◦ (12)

P (1)H◦ = H◦P (1) + V (13)

P (2)H◦ = H◦P (2) + V P (1) (14)

... (15)

Evaluating one matrix element of the first-order equation yields

〈k|P (1)H◦|a〉 = 〈k|H◦P (1)|a〉+ 〈k|V |a〉. (16)

Operating to the left or right with the operator H◦ yields

〈k|P (1)|a〉εa = εk〈k|P (1)|a〉+ 〈k|V |a〉. (17)

The quantity 〈k|P (1)|a〉 can be expressed in a very useful form by observing that

〈k|P (1)|a〉 =
〈k|V |a〉
εa − εk

= 〈k|[εa − εk]−1V |a〉 = 〈k|[εa −H◦]−1V |a〉. (18)

Thus, the operator P (1) is defined as

P (1) = [εa −H◦]−1V. (19)

Evaluating one matrix element of the second-order equation yields

〈k|P (2)H◦|a〉 = 〈k|H◦P (2)|a〉+ 〈k|V P (1)|a〉. (20)

Operating to the left or right with the operator H◦ and using the expression for P (1) yields

〈k|P (2)|a〉εa = εk〈k|P (2)|a〉+ 〈k|V [εa −H◦]−1V |a〉. (21)

The quantity 〈k|P (1)|a〉 can be expressed in the very useful form

〈k|P (2)|a〉 =
〈k|V [εa −H◦]−1V |a〉

εa − εk
= 〈k|[εa − εk]−1V [εa −H◦]−1V |a〉 = 〈k|[εa −H◦]−1V [εa −H◦]−1V |a〉.

(22)
The operator P (2) is defined as

P (2) = [εa −H◦]−1V [εa −H◦]−1V. (23)

Generalizing,
P (n) = ([εa −H◦]−1V )n. (24)
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The perturbative corrections to an initial function φa can now be written.

ψa = φa +
∑

k 6=a

ckaφk (25)

cka =
∑
n

c
(n)
ka (26)

c
(n)
ka = 〈k|P (n)|a〉 = 〈k|([εa −H◦]−1V )n|a〉. (27)

To evaluate one of these terms, it is useful to “insert a complete set of states” in between pairs of
[εa−H◦]−1V operators. This action is mathematically based on the identity operator

∑
mOm = I,

where Om = |m〉〈m| is the mth projection operator. The rationale for doing this lies in the simple
interpretation of a complex integral in terms of products of integrals involving only V . The second
order coefficient becomes

c
(2)
ka = 〈k|[εa −H◦]−1V [εa −H◦]−1V |a〉 = 〈k|[εa −H◦]−1V

∑
m

Om[εa −H◦]−1V |a〉. (28)

=
∑
m

〈k|[εa −H◦]−1V |m〉〈m|[εa −H◦]−1V |a〉. (29)

=
∑

m〈k|V |m〉〈m|V |a〉
(εa − εk)(εa − εm)

. (30)
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