Time-Independent Perturbation Theory

Assume that for a quantum system there exists a Hamiltonian \mathcal{H}_{\circ} for which eigenfunctions $\left\{\phi_{i}\right\}$ and eigenvalues $\left\{\epsilon_{i}\right\}$ are known. If some other contribution to the total energy is discovered or created by external means, then another term must be added to the Hamiltonian,

$$
\begin{equation*}
\mathcal{H}=\mathcal{H}_{0}+V . \tag{1}
\end{equation*}
$$

If the new operator V represents an energy contribution which is small compared to the original energy ϵ_{i} of state ϕ_{i}, then V is said to be a perturbation to the original Hamiltonian \mathcal{H}_{o}.

The existence of a perturbation leads to a description of the system in terms of a new set of wavefunctions $\left\{\psi_{i}\right\}$. We can describe the transformation of a particular function $\phi_{a} \rightarrow \psi_{a}$ in terms of an operator P, such that

$$
\begin{equation*}
\psi_{a}(\vec{r})=P(V) \phi_{a}(\vec{r}) . \tag{2}
\end{equation*}
$$

Presumably, ψ_{a} differs only slightly from ϕ_{a}, and that difference can be expressed as a linear combination of elements of the complete set $\left\{\psi_{i}\right\}$,

$$
\begin{equation*}
\psi_{a}=\phi_{a}+\sum_{i} c_{i a} \phi_{i} . \tag{3}
\end{equation*}
$$

The perturbation operator P can be expanded in a series of terms dependent upon V to some order. Since V is assumed to be much smaller that \mathcal{H}_{0} in an operator sense, terms of order V^{n} should become less significant as n increases. Usually, only effects up to order 2 , that is, dependent upon V^{2}, need be considered. Thus,

$$
\begin{equation*}
P=1+P^{(1)}+P^{(2)}+\cdots . \tag{4}
\end{equation*}
$$

The set of coefficients $\left\{c_{i a}\right\}$ is determined by projecting each component

$$
\begin{equation*}
O_{k} \psi_{a}=|k\rangle\left\langle k \mid \psi_{a}\right\rangle=\sum_{i} c_{i a}\langle k \mid i\rangle|k\rangle=c_{k a} \phi_{k}=c_{k a}|k\rangle, \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{k a}=\left\langle k \mid \psi_{a}\right\rangle=\langle k| P\left|\phi_{a}\right\rangle . \tag{6}
\end{equation*}
$$

So, each coefficient is a sum over a series of terms of increasing order in V

$$
\begin{equation*}
c_{k a}=\delta_{k a}+\langle k| P^{(1)}\left|\phi_{a}\right\rangle+\langle k| P^{(2)}\left|\phi_{a}\right\rangle+\cdots . \tag{7}
\end{equation*}
$$

To develop the operator P, begin with the Schrödinger equation

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \psi=\mathcal{H} \psi \rightarrow i \hbar P \frac{\partial}{\partial t} \phi=\left(\mathcal{H}_{\circ}+V\right) P \phi, \tag{8}
\end{equation*}
$$

where the subscript a is supressed. Using

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t} \phi=\mathcal{H}_{\circ} \phi \tag{9}
\end{equation*}
$$

we find that

$$
\begin{equation*}
P \mathcal{H}_{0}=\left(\mathcal{H}_{0}+V\right) P . \tag{10}
\end{equation*}
$$

Expanding P,

$$
\begin{equation*}
\left(1+P^{(1)}+P^{(2)}+\cdots\right) \mathcal{H}_{\circ}=\left(\mathcal{H}_{\circ}+V\right)\left(1+P^{(1)}+P^{(2)}+\cdots\right) . \tag{11}
\end{equation*}
$$

Collecting terms of equal order in the perturbation V, we arrive at the set of equations

$$
\begin{gather*}
\mathcal{H}_{\circ}=\mathcal{H}_{\circ} \tag{12}\\
P^{(1)} \mathcal{H}_{\circ}=\mathcal{H}_{0} P^{(1)}+V \tag{13}\\
P^{(2)} \mathcal{H}_{\circ}=\mathcal{H}_{\circ} P^{(2)}+V P^{(1)} \tag{14}
\end{gather*}
$$

Evaluating one matrix element of the first-order equation yields

$$
\begin{equation*}
\langle k| P^{(1)} \mathcal{H}_{\circ}|a\rangle=\langle k| \mathcal{H}_{\circ} P^{(1)}|a\rangle+\langle k| V|a\rangle . \tag{16}
\end{equation*}
$$

Operating to the left or right with the operator \mathcal{H}_{\circ} yields

$$
\begin{equation*}
\langle k| P^{(1)}|a\rangle \epsilon_{a}=\epsilon_{k}\langle k| P^{(1)}|a\rangle+\langle k| V|a\rangle . \tag{17}
\end{equation*}
$$

The quantity $\langle k| P^{(1)}|a\rangle$ can be expressed in a very useful form by observing that

$$
\begin{equation*}
\langle k| P^{(1)}|a\rangle=\frac{\langle k| V|a\rangle}{\epsilon_{a}-\epsilon_{k}}=\langle k|\left[\epsilon_{a}-\epsilon_{k}\right]^{-1} V|a\rangle=\langle k|\left[\epsilon_{a}-\mathcal{H}_{0}\right]^{-1} V|a\rangle . \tag{18}
\end{equation*}
$$

Thus, the operator $P^{(1)}$ is defined as

$$
\begin{equation*}
P^{(1)}=\left[\epsilon_{a}-\mathcal{H}_{o}\right]^{-1} V . \tag{19}
\end{equation*}
$$

Evaluating one matrix element of the second-order equation yields

$$
\begin{equation*}
\langle k| P^{(2)} \mathcal{H}_{\circ}|a\rangle=\langle k| \mathcal{H}_{\circ} P^{(2)}|a\rangle+\langle k| V P^{(1)}|a\rangle . \tag{20}
\end{equation*}
$$

Operating to the left or right with the operator \mathcal{H}_{\circ} and using the expression for $P^{(1)}$ yields

$$
\begin{equation*}
\langle k| P^{(2)}|a\rangle \epsilon_{a}=\epsilon_{k}\langle k| P^{(2)}|a\rangle+\langle k| V\left[\epsilon_{a}-\mathcal{H}_{0}\right]^{-1} V|a\rangle . \tag{21}
\end{equation*}
$$

The quantity $\langle k| P^{(1)}|a\rangle$ can be expressed in the very useful form
$\langle k| P^{(2)}|a\rangle=\frac{\langle k| V\left[\epsilon_{a}-\mathcal{H}_{0}\right]^{-1} V|a\rangle}{\epsilon_{a}-\epsilon_{k}}=\langle k|\left[\epsilon_{a}-\epsilon_{k}\right]^{-1} V\left[\epsilon_{a}-\mathcal{H}_{0}\right]^{-1} V|a\rangle=\langle k|\left[\epsilon_{a}-\mathcal{H}_{\circ}\right]^{-1} V\left[\epsilon_{a}-\mathcal{H}_{0}\right]^{-1} V|a\rangle$.
The operator $P^{(2)}$ is defined as

$$
\begin{equation*}
P^{(2)}=\left[\epsilon_{a}-\mathcal{H}_{0}\right]^{-1} V\left[\epsilon_{a}-\mathcal{H}_{0}\right]^{-1} V . \tag{23}
\end{equation*}
$$

Generalizing,

$$
\begin{equation*}
P^{(n)}=\left(\left[\epsilon_{a}-\mathcal{H}_{0}\right]^{-1} V\right)^{n} . \tag{24}
\end{equation*}
$$

The perturbative corrections to an initial function ϕ_{a} can now be written.

$$
\begin{gather*}
\psi_{a}=\phi_{a}+\sum_{k \neq a} c_{k a} \phi_{k} \tag{25}\\
c_{k a}=\sum_{n} c_{k a}^{(n)} \tag{26}
\end{gather*}
$$

$$
\begin{equation*}
c_{k a}^{(n)}=\langle k| P^{(n)}|a\rangle=\langle k|\left(\left[\epsilon_{a}-\mathcal{H}_{\circ}\right]^{-1} V\right)^{n}|a\rangle \tag{27}
\end{equation*}
$$

To evaluate one of these terms, it is useful to "insert a complete set of states" in between pairs of $\left[\epsilon_{a}-\mathcal{H}_{0}\right]^{-1} V$ operators. This action is mathematically based on the identity operator $\sum_{m} O_{m}=I$, where $O_{m}=|m\rangle\langle m|$ is the m th projection operator. The rationale for doing this lies in the simple interpretation of a complex integral in terms of products of integrals involving only V. The second order coefficient becomes

$$
\begin{gather*}
c_{k a}^{(2)}=\langle k|\left[\epsilon_{a}-\mathcal{H}_{\circ}\right]^{-1} V\left[\epsilon_{a}-\mathcal{H}_{\circ}\right]^{-1} V|a\rangle=\langle k|\left[\epsilon_{a}-\mathcal{H}_{\circ}\right]^{-1} V \sum_{m} O_{m}\left[\epsilon_{a}-\mathcal{H}_{\circ}\right]^{-1} V|a\rangle \tag{28}\\
=\sum_{m}\langle k|\left[\epsilon_{a}-\mathcal{H}_{\circ}\right]^{-1} V|m\rangle\langle m|\left[\epsilon_{a}-\mathcal{H}_{\circ}\right]^{-1} V|a\rangle \tag{29}\\
=\frac{\sum_{m}\langle k| V|m\rangle\langle m| V|a\rangle}{\left(\epsilon_{a}-\epsilon_{k}\right)\left(\epsilon_{a}-\epsilon_{m}\right)} \tag{30}
\end{gather*}
$$

