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Two-Photon Absorption

A general two-photon absorption experiment involves two laser beams of different frequencies, po-
larizations and directions. For this theoretical development, this translates to consideration of two
modes of the radiation field, (~k1, ε̂1) and ( ~k2, ε̂2). Using some detection scheme, be it subsequent flu-
orescence or photo-ionization, acoustic, thermal lensing or birefringence, the probability of creating
the final state |b〉 is measured.

To calculate the probability of finding the system changing from |aξa〉 to |bξb〉 during the time
interval t we need to take the absolute square of
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we will insert a complete set of states between the two operators
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This is exact only if the set of states [|c〉] is truly complete, and this insertion is not necessary but
useful. Focusing on just the t2 integral,
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Thus, we have two different time-orderings: ω1 followed by ω2 and vice versa. There are also terms
in eq. 1 which describe absorption of two ω1 photons and two ω2 photons, but these will be ignored.
Thus, eq. 1 will be described diagrammatically by the pictures below.
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At this point is it necessary to convert the operator

aj ε̂jei(
~kj ·~r−ωjtj) · ~p (5)

into a more convenient operator. The first approximation is refered to as the electric dipole ap-
proximation. Notice that when the wavelength is large compared to the dimensions of the quantum
system (molecule), then the exponential operator is approximately constant for all values of ~r in
the integral:

ei(
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The origin of the molecule is define as ~r◦. The phase factor ei~kj ·~r◦ is of no significance for incoherent
phenomena, since taking an absolute square will eliminate it, but will be important in coherent
nonlinear optical phenomena where the amplitude is the important quantity. Now, the operator is
simple ε̂1 ·~p, and the previous transformation from the momentum to the length form of an integral
can be invoked.
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will be used in the expression for Uba. The annihilation operator aj only operates on the number
state |nj〉 of the field. This results in the expression
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which should simplify the notation considerably.
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Evaluation of an integral over t2 yields
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where j = ω1 or ω2. Ignoring the −1 in the brackets as an artifact of choosing t = 0 as the time at
which the field appeared, the second integration over t1 for the case of ω1 followed by ω2 is simple
because of the requirement for energy conservation

ωbc + ωca − ω1 − ω2 = ωb − ωc + ωc − ωa − ω1 − ω2 = 0 . (11)
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Adding both time-orderings and simplifying the notation a bit yields
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and the probability of the transition a→ b is |Uba|2. Note that |Uba|2 is proportional to the product
of field intensities I1I2. Phenomenological damping corrections ωca → ωca − iΓc are required to
keep Uba finite when a resonance condition <(ωca) = ωj

To discuss selection rules for a two-photon transition, that is list of allowed and forbidden
transitions for given polarizations and propagation directions, the symmetry of the the matter
states will be considered in construction of the matrix
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for which ri,j = x, y, or z S is used to determine Uba through

Uba = Sε̂1ε̂2 =
∑

i,j=x,y,z

Sijε1iε2j . (15)

. The integrals will be zero if the integrand is antisymmetric with respect to some symmetry
operation of the molecule, or, speaking in group theoretic terms, does not transform as the basis
of the totally symmetric repesentation of the group of symmetry operations of the molecule.
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