Problems

For the following questions, define a one-dimensional molecule to be one electron in one-dimensional (z) potential of length L. The potential energy is infinite beyond the ends of the molecule and constant within. Choose L such that the wavelength of the first transition, $n=1 \rightarrow n=2$, is 200 nm . Use the usual wavefunctions for this quantum system, but change the energies to be more realistic. Use the usual expression for the energy of the $n=1$ and $n=2$ states, but for $n \geq 3$ assume that the energy difference between states is equal to the energy difference between states 1 and 2 .

1. (a) Calculate the polarizability matrix $\alpha(\omega)$ of a one-dimensional molecule with one electron. Include only states $1,2,3$ and 4.
(b) Assume that a single sheet of molecules is arranged in a periodic array with spacing equal to L. The molecules are aligned perpendicular to this plane. A three-dimensional solid consists of sheets separated by the distance L. Use the Clausius-Mosotti relation to determine the index of refraction n as a function of wavelength for $300<\lambda<1000 \mathrm{~nm}$.
2. (a) Calculate the third-order polarizability tensor $\gamma\left(\omega_{3}=2 \omega_{1}-\omega_{2}\right)$ of a one-dimensional molecule with one electron. Include only states $1,2,3$ and 4 . Use $\lambda_{1}=500$ and $\lambda_{2}=600 \mathrm{~nm}$.
(b) Using your result for the index of refraction $n(\omega)$, determine the directions of propagation for phase-matching.
(c) Now suppose that the molecules are oriented at 45° with repect to the plane. What is γ ? What is the phase-matching condition?
3. Add a small perturbation to the molecules, that is, the potential energy is not constant but rather $P E=a z$. This breaks inversion symmetry along the z axis.
(a) Calculate the second-order polarizability tensor $\beta(2 \omega=\omega+\omega)$ of a one-dimensional molecule with one electron. Include only states $1,2,3$ and 4 . Use $\lambda=600 \mathrm{~nm}$.
(b) Using your result for the index of refraction $n(\omega)$, determine the directions of propagation for phase-matching.
(c) Now suppose that the molecules are oriented at 45° with repect to the plane. What is β ? What is the phase-matching condition?
