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The Time-Evolution Operator

The time-evolution of a wavefunction is determined by the effect of a time evolution operator
through the relation

Ψ(~r, t) = U(t)Ψ(~r, t), with U(0) = 1. (1)

Using this in the Schrödinger equation

i~ ∂
∂t

Ψ(~r, t) = HΨ(~r, t) =⇒ i~
(

∂
∂t
U(t)

)

Ψ(~r, 0) = HU(t)Ψ(~r, 0), (2)

yields the differential equation for U

i~ ∂
∂t
U(t) = HU(t). (3)

IfH is independent of time, the solution is the simple time dependent phase factor of a stationary
state

U(t) = e−
i
~Ht. (4)

Since the stationary state Ψ(0) is an eigenfunction of H with eigenvalue E,

U(t)Ψ(0) = e−
i
~HtΨ(0) = e−

i
~EtΨ(0). (5)

When the Hamiltonian is a general function of time

U(t) = U(0)− i
~

∫ t

0
H d(t′)U(t′)dt′. (6)

The solution to this integral equation can be obtained by interation. The first order approximation
can be obtained by substituting the zero order approximation U(0) = 1 into the integral

U(t) = 1− i
~

∫ t

0
H(t′) dt′. (7)

The second order approximation is obtained by replacing U(t) in the integral with the first order
expression

U(t) = 1− i
~

∫ t

0
H(t′)dt′ +

(

− i~

)2 ∫ t

0

∫ t′

0
H(t′)H(t′′)dt′′dt′, (8)
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and so forth

U(t) = 1− i
~

∫ t

0
H(t1) dt1 +

(

− i~

)2 ∫ t

0

∫ t1

0
H(t1)H(t2) dt1 dt2

+
(

− i~

)3 ∫ t

0

∫ t1

0

∫ t2

0
H(t1)H(t2)H(t3) dt1 dt2 dt3 + · · · , (9)

When H = Ho + V (t), U(t) can be written in the form

U(t) = Uo(t)Uv(t), where Uo(t) = e−
i
~Hot. (10)

Using this definition in the Schrodinger equation yields

i~
[(

∂
∂t
Uo

)

Uv + Uo

(

∂
∂t
Uv

)]

= HUoUv = HoUoUv + V (t)UoUv. (11)

Then, (??) leads to

HoUoUv + i~Uo
∂
∂t
Uv = HoUoUv + V (t)UoUv , (12)

or simply

i~Uo
∂
∂t
Uv = V (t)UoUv . (13)

Operating on the left with U †o yields the relation

i~ ∂
∂t
Uv = U †0V (t)UoUv = VH(t)Uv , (14)

where VH(t) is the Heisenberg representation of the operator V(t). Solving the resulting integral
equation by iteration yields

Uv(t) = 1− i
~

∫ t

0
VH(t1) dt1 +

(

− i~

)2 ∫ t

0

∫ t1

0
VH(t1)VH(t2) dt1 dt2

+
(

− i~

)3 ∫ t

0

∫ t1

0

∫ t2

0
VH(t1)VH(t2)VH(t3) dt1 dt2 dt3 + · · · . (15)

When there is no applied time-dependent electromagnetic field or other perturbation, then the
Hamiltonian may consist of two terms: one large operator Ho for which the eigenstates can be
found, and one small operator V = constant operator considered to be a perturbation. Then the
expression for U is again ?? but the time dependence of the integrands is particulary simple.
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Expansion of Ψ in a basis of pseudo-stationary states

Commonly, we know only the set of eigenstates [φl : l = 1, 2, . . .] of an approximate time-independent
Hamiltonian Ha, with Haφl = εlφl. Even when the total Hamiltonian has no time dependence, Ψ
will be a time-dependent linear combination of the basis functions. Suppose that Ho = Ha +Hp,
where Hp represents a small time-independent perturbation, such as spin-orbit coupling. Then

Ψ(t) =
∑

k

ck(t)φk =
∑

k

ck(t)|ka〉 , (16)

where the set of coefficients [ck] is determined by perturbation theory or a variational approach,
and the subscript a on the index k indicates that the function |ka〉 is an eigenstate of Ha. Using
the concept of a vector space, the set [ |ka〉 ] is presumed to be a complete basis for the description
of any state vector |Ψ〉. An important general expression for the coefficients is

ck(t) = 〈ka|Ψ(t)〉 , (17)

which is simply the projection of Ψ on to the |ka〉 axis. Now suppose that we know that at time
t = 0 the system is in a definite eigenstate of Ha, that is Ψ(0) = |la〉. We also know that

Ψ(t) = U(t)Ψ(0) = UΨo . (18)

So,
ck(t) = 〈k|Ψ(t)〉 = 〈k|UΨo〉 = 〈ka|U |la〉 = Ukl . (19)

The zero-order expression for ck(t) arises from the zero-order approximation for U , that is U(t) =
UoUv = Uo. Then

ck(t) = 〈ka|Uo|la〉 = 〈ka|e−
i
~Hat|la〉 = e−

i
~ εlt〈ka|la〉 = e−

i
~ εltδkl . (20)

So, the state of the system does not change. The first order term in Uv contributes

ck(t) = 〈ka|Uo
(

− i~

∫ t

0
e
i
~Hat′Hpe−

i
~Hat′ dt′

)

|la〉 , (21)

or

ck(t) = − i~e
− i
~ εlt

∫ t

0
〈ka|e

i
~Hat′Hpe−

i
~Hat′ |la〉 dt′ , (22)

or

ck(t) = − i~e
− i
~ εlt〈ka|Hp|la〉

∫ t

0
e
i
~ (εk−εl)t′ dt′ = − i~e

− i
~ εlt〈ka|Hp|la〉

(

−i~
εk − εl

)

(

e
i
~ (εk−εl)t − 1

)

.

(23)
The probability of the state |ka〉 is

|ck(t)|2 =
2

(εk − εl)2 |〈ka|Hp|la〉|
2
(

1− cos
(

(εk − εl)
~ t

))

, (24)

which is just the first-order time-independent perturbation result. This looks pathological as (εk −
εl) → 0, but it really is not since cosx = 1 − x2/2 + · · · . The most useful application of this
expression is for the case of εk − εl ≈ 0. Then

|ck(t)|2 =
|〈ka|Hp|la〉|2t2

~2 . (25)
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U(t) for the EM Field-Matter Interation

It is customary to consider the interaction between the electromagnetic field and matter to be weak
relative to the interactions among the matter particles themselves, and this is certainly the case
for typical nonlinear optical phenomena. Therefore, we write

H = Hm +HI(t) +HF , (26)

where Hm describes the matter, HF describes the field and HI(t) describes the interaction. If
HI(t) = 0, then H has two independent terms, so the total wavefunction is a simple product of
matter and field states,

Ψ(t) = ψ(t)ξ(t) . (27)

We will assume that the Schrödinger equation for the matter has been solved and that the wave-
function for the matter is

Ψ(t) =
∑

l

cl(t)φl =
∑

l

cl(t)|lm〉 , (28)

which describes a wave packet or coherent superposition of the stationary state solutions [|km〉].
The field wavefunction is

ξ =
∏

k

|nk〉
∏

k′
|0k′〉 , (29)

where k ranges over modes of the radiation field that are of interest and k′ refers to all other
modes. A coherent state function would be prefered, but the number state function makes the
algebra simpler. The coherence of the radiation field can be handled at a later stage.

The total Hamiltonian is

H =
ne+nn
∑

l=1

1
2ml

[

~pl − ql ~A(~rl, t)
]2

+
ne+nn
∑

i 6=j

qiqj
4πε◦rij

+
modes
∑

k

~ωk
(

a†kak +
1
2

)

. (30)

Considering the interaction of the radiation field only with the electrons, the interaction energy
operator is

HI =
ne
∑

l=1

−e
m

(

~pl · ~A(~rl, t) + ~A(~rl, t) · ~pl
)

+
ne
∑

l=1

e2

2m
~A(~rl, t) · ~A(~rl, t) , (31)

and the total Hamiltonian is

H =
ne+nn
∑

l=1

p2
l

2ml
+
ne+nn
∑

i6=j

qiqj
4πε◦rij

+HI(t) +
modes
∑

k

~ωk
(

a†kak +
1
2

)

, (32)

or
H = H◦ +HI(t) +HF . (33)

A time-evolution operator is now

U(t) = U◦(t)Uv(t), where U◦(t) = e−
i
~ (H◦+HF )t (34)

and Uv is defined by eq. 16.
The operator

VH(t) = U †◦(t)HI(t)U◦(t) (35)

must now be carefully defined. First, specify HI precisely. The term involving A2 will be ignored
as not being important for this discussion. Since we are working in the Coulomb gauge ~∇ · ~A = 0,
and

~p · ~A = −i~~∇ · ~A = −i~
[

(~∇ · ~A) + ~A · ~∇
]

= −i~ ~A · ~∇ = ~A · ~p (36)
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as an operator relation. Therefore,

HI =
ne
∑

l=1

−2e
m
~A(~rl, t) · ~pl . (37)

This is refered to as the momentum form of the interaction Hamiltonian. The vector potential ~A is
a simple multiplicative operator as far as the matter states are concerned but contains annihilation
and creation operators for the field states. So, consider only the matter operators for the moment.
Using ~pl = −i~ ~∇l as an operator on a matter state |lm〉 chills the spine. Fortunately, the simple
commutator relations

[x, px] = [y, py] = [z, pz] = i~ , (38)

[x, p2
x] = 2i~px, [y, p2

y] = 2i~py, [z, pz] = 2i~pz (39)

provide a way to replace ~p with ~r. We will need to evaluate integrals of the form 〈k′m|~pl|km〉. Using

[~rj ,H◦] =
ne
∑

l=1

1
2m

[~rj , p2
l ] =

2i~~pj
2m

, (40)

we find that
〈k′|~pl|k〉 =

m
i~〈k

′|[~rl,H◦]|k〉 =
m
i~〈k

′|~rlH◦ −H◦~rl|k〉 , (41)

or
〈k′|~pl|k〉 =

m
i~(Ek − E′k)〈k′|~rl|k〉 = im(ω′k − ωk)〈k′|~rl|k〉 = imωk′k〈k′|~rl|k〉 . (42)

More thoughtful analyses yield the same result. This replacement of ~p with ~r will be used later.
Notice that HI is a sum of one-electron operators. Electrons interact with the field individually,

and the results are additive. Without any loss in generality, the interaction of only a single particle
will be considered.HI . Thus

HI = −2e
m
~A(~r, t) · ~p . (43)

Now, turn to the quantized field operator ~A. From an earlier discussion,

~A(~r, t) =
modes
∑

j

Aj

[

aj ε̂j e i(k̃j ·̃r−ωj t) + a†j ε̂j e−i(k̃j ·̃r−ωj t)
]

. (44)

Both creation a and annihilation a† operators appear for all the polarizations and wave vectors
~k. In a two-photon process, governed by the second term in equation 16, many products of these
operators would appear. We can restrict the contributions to ~A to only those operators which
yield changes in the field which are measurable or expected. Thus, for a two-photon absorption of
photons of modes (ω1, ε̂1) and (ω2, ε̂2), we can use

~A(~r, t) = A1 a1 ε̂1 e i(k̃1 ·̃r−ω1 t) + A2 a2 ε̂2 e i(k̃2 ·̃r−ω2 t) . (45)

Similarly, for sum-frequency generation (or second harmonic generation), photons of modes (ω1, ε̂1)
and (ω2, ε̂2) are annihilated, and one photon of mode (ω3, ε̂3) is created. So, we can use

~A(~r, t) = A1 a1 ε̂1 e i(k̃1 ·̃r−ω1 t) + A2 a2 ε̂2 e i(k̃2 ·̃r−ω2 t) + A3 a†3 ε̂3 e−i(k̃3 ·̃r−ω3 t) . (46)

All this can now be used to construct VH ,

VH(t) = U †◦(t)HI(t)U◦(t) = e−
i
~ (H◦+HF )tHI(t)e

i
~ (H◦+HF )t . (47)
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Continuing,

VH(t) = e−
i
~ (H◦+HF )t

[

−2e
m
~A(~r, t) · ~p

]

e
i
~ (H◦+HF )t . (48)

We are now ready to make use of the second order term for Uv(t),

Uv(t) =
(

− i~

)2 ∫ t

0

∫ t1

0
VH(t1)VH(t2) dt1 dt2 . (49)

First, consider how this operator will be used. From ??,

Ψ(t) = U(t)ψ(0)ξ(0) , (50)

we see that we need to specify the initial state of the system. Ordinarily, this would be given as
|a〉ξa, where |a〉 is a stationary state of the matter Hamiltonian and ξa is a product of number
states of the field. We will be looking for evidence of a particular final state |f〉ξf . Thus, we want
to project Ψ(t) onto the |f〉ξf axis. Generally,

Ψ(t) =
∑

l

cl(t)|ka〉 = U(t)ψ(0)ξ(0) , (51)

so,
cf (t) = 〈fξf |Ψ(t)〉 = 〈fξf |U(t)|aξa〉 = Ufa . (52)

Using the product form for U yields

Ufa = 〈fξf |U◦(t)Uv(t)|aξa〉 = 〈fξf |e−
i
~ (H◦+HF )tUv(t)|aξa〉 . (53)

Operating to the left with U◦,

Ufa = e−
i
~Ef t〈fξf |Uv(t)|aξa〉 . (54)

Using only the second order term for Uv,

Ufa = e−
i
~Ef t〈fξf |Uv(t)|aξa〉 . (55)

Continuing

Ufa =
(

− i~

)2

e−
i
~Ef t

∫ t

0

∫ t1

0
〈fξf |VH(t1)VH(t2)|aξa〉 dt1 dt2 , (56)

we arrive at the glorious equation

Ufa =
(

− i~

)2

e−
i
~Ef t

∫ t

0

∫ t1

0
〈fξf |e−

i
~ (H◦+HF )t1

[

−2e
m
~A(~r, t1) · ~p

] [

−2e
m
~A(~r, t2) · ~p

]

e
i
~ (H◦+HF )t2 |aξa〉 dt1 dt2 . (57)

If we use the third-order term for Uv, we arrive at the even more glorious equation

Ufa =
(

− i~

)3

e−
i
~Ef t

∫ t

0

∫ t1

0

∫ t2

0
〈fξf |e−

i
~ (H◦+HF )t1

[

−2e
m
~A(~r, t1) · ~p

] [

−2e
m
~A(~r, t2) · ~p

]

[

−2e
m
~A(~r, t3) · ~p

]

e
i
~ (H◦+HF )t3 |aξa〉 dt1 dt2 dt3 . (58)
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And gloriouser sill is the fourth-order equation

Ufa =
(

− i~

)4

e−
i
~Ef t

∫ t

0

∫ t1

0

∫ t2

0

∫ t3

0
〈fξf |e−

i
~ (H◦+HF )t1

[

−2e
m
~A(~r, t1) · ~p

] [

−2e
m
~A(~r, t2) · ~p

]

[

−2e
m
~A(~r, t3) · ~p

] [

−2e
m
~A(~r, t4) · ~p

]

e
i
~ (H◦+HF )t4 |aξa〉 dt1 dt2 dt3 dt4 . (59)

Two-Photon Absorption

To find the probability of finding the system in state |fξf 〉 at time t we need to take the absolute
square of the glorious equation. To evaluate

Ufa =
(

− i~

)2

e−
i
~Ef t

∫ t

0

∫ t1

0
e−

i
~Ef t1〈fξf |

[

−2e
m
~A(~r, t1) · ~p

] [

−2e
m
~A(~r, t2) · ~p

]

|aξa〉e
i
~Eat2 dt1 dt2 , (60)

we will insert a complete set of states between the two operators

∑

j

〈fξf |
[

−2e
m
~A(~r, t1) · ~p

]

|jξj〉〈jξj |
[

−2e
m
~A(~r, t2) · ~p

]

|aξa〉 . (61)

Focusing on just the t2 integral,

− 2e
m

∫ t1

0
〈jξj |

[

A1 a1 ε̂1 e i(k̃1 ·̃r−ω1 t2 ) + A2 a2 ε̂2 e i(k̃2 ·̃r−ω2 t2 )
]

· ~p|aξa〉e
i
~Eat2 dt2

= −2e
m

∫ t1

0
〈jξj |A1 a1 ε̂1 e i(k̃1 ·̃r−ω1 t2 ) · p̃|aξa〉e

i
~Ea t2 dt2

− 2e
m

∫ t1

0
〈jξj |A2 a2 ε̂2 e i(k̃2 ·̃r−ω2 t2 ) · p̃|aξa〉e

i
~Ea t2 dt2 . (62)

Thus, we have two different time-orderings: ω1 followed by ω2 and vice versa.
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