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1 Introduction

The Hilbert metric is a canonical metric associated to an arbitrary bounded
convex domain. It was introduced by David Hilbert in 1894 as an example of a



2 Ren Guo

metric for which the Euclidean straight lines are geodesics. Hilbert geometry
generalizes Klein’s model of hyperbolic geometry.

Let K be a bounded open convex set in R
n (n ≥ 2). The Hilbert metric

dK on K is defined as follows. For any x ∈ K, let dK(x, x) = 0. For distinct
points x, y in K, assume the straight line passing through x, y intersects the
boundary ∂K at two points a, b such that the order of these four points on the
line is a, x, y, b as in Figure 1.

a x y b

Figure 1. Hilbert metric

Denote the cross-ratio of the points by

[x, y, b, a] =
||b − x||

||b− y||
·
||a− y||

||a− x||

where || · || is the Euclidean norm of Rn. Then the Hilbert metric is

dK(x, y) =
1

2
ln[a, x, y, b].

The metric space (K, dK) is called a Hilbert geometry. Note that a Euclidean
straight line in K is a geodesic under the metric dK . When K is the unit open
ball

{(x1, ..., xn) ∈ R
n|

n∑
i=1

x2
i < 1},

(K, dK) is the Klein’s model of hyperbolic geometry.
Since the cross-ratio is invariant under a perspectivity P of center O ∈

R
n ∪ {∞}, (K, dK) and (P (K), dP (K)) are isometric as Hilbert geometries. In

particular, when K is an open ellipsoid (ellipse when n=2),

{(x1, ..., xn) ∈ R
n|

n∑
i=1

x2
i

a2i
< 1}



Characterizations of hyperbolic geometry among Hilbert geometries 3

for some nonzero numbers a1, ..., an, (K, dK) is isometric to hyperbolic space.
Hilbert geometry has been studied under different viewpoints: affine geom-

etry, Finsler geometry, dynamical system, etc. For the recent research activity
on Hilbert geometry, see, for example, the papers by Colbois, Vernicos and
Verovic [11, 33, 13], Förtsch, Karlsson and Noskov [15, 22], de la Harpe [19],
Benoist [2, 3, 4, 5], Papadopoulos and Troyanov [27, 28, 29], Socié-Méthou
[31, 32] and the book by Chern and Shen [9] and various chapters in the
present handbook.

Hilbert geometry is such a rich subject. In this chapter, we focus on just
one problem: to characterize hyperbolic geometry among Hilbert geometries.
This is equivalent to projectively characterizing ellipsoids among open convex
sets using intrinsic properties of Hilbert metrics.

The problem of characterization is studied through different approaches.
In this chapter, we survey seven approaches and include one conjecture for
this problem. It is interesting to find the subtle relationships between these
different approaches. Since there exist characterizations of ellipsoids without
using Hilbert metrics, it is also interesting to find relationships between the
characterizations using Hilbert metrics and those which are not using Hilbert
metrics.

Acknowledgment. We would like to thank Athanase Papadopoulos and
Marc Troyanov for inviting us to contribute a chapter to the Handbook of
Hilbert geometry, careful reading of the manuscript and comments on improv-
ing the exposition of the chapter.

2 Reflections

A reflection in Hilbert or in Minkowski geometry is an isometric involution
fixing a hyperplane. In hyperbolic geometry, there is a reflection through
every hyperplane. Busemann and Kelly [8] characterized hyperbolic geometry
among Hilbert geometries using this properties. More precisely:

Theorem 2.1 (Busemann–Kelly). Let K be a bounded open convex set in R
n

(n ≥ 2) with a Hilbert metric dK . Reflections in all the hyperplanes in K
through one fixed point exist if and only if K is an ellipsoid.

This result is proved on page 163 of [8] for the 2-dimensional case and on
page 297 for the 3-dimensional case. The arguments extend to all dimensions.
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3 Perpendicularity

Let us recall the definition of perpendicularity on page 121 of Busemann and
Kelly’s book [8].

If p and ξ are any point and line respectively in a metric space M , then a
point f on ξ is a “foot of p on ξ” if

dK(p, f) ≤ dK(p, x)

for all points x on ξ. A line η, intersecting ξ, is perpendicular to ξ if every
point on η has the point of intersection of ξ and η as a foot on ξ. With this
definition, the fact that η is perpendicular to ξ does not necessarily imply that
ξ is perpendicular to η. If it does, the metric space M is said to have the
symmetry of perpendicularity.

Kelly and Paige [24] showed that the symmetry of perpendicularity almost
characterizes hyperbolic geometry among Hilbert geometries.

Theorem 3.1 (Kelly–Paige). Let K be a bounded open convex set in R
2 with

a Hilbert metric dK . (K, dK) has the symmetry of perpendicularity if and only
if K is an ellipse or the interior of a triangle. Therefore, if the boundary
∂K contains at most one line segment, then (K, dK) has the symmetry of
perpendicularity if and only K is an ellipse.

The proof of this result depends on the following characterization of an
ellipse.

Lemma 3.2 (Kubota [26]). Let Γ be a simple closed convex curve in the
Euclidean plane and v an arbitrary direction. Let lv be the line joining the two
contact points of two tangents to Γ in the direction v. If for any v the line
lv cuts all chords of Γ in the direction v into two equal parts, then Γ is the
boundary of an ellipse.

Theorem 3.1 is easily generalized to higher dimensions. In higher dimen-
sions, perpendicularity refers to lines in the same plane.

Theorem 3.3 (Kelly–Paige). Let K be a bounded open convex set in R
n

(n ≥ 2) such that ∂K is strictly convex. Let dK be the Hilbert metric on K.
(K, dK) has the symmetry of perpendicularity if and only if K is an ellipsoid.

In fact, if (K, dK) has the symmetry of perpendicularity, any plane section
of K has the symmetry of perpendicularity. Thus by Theorem 3.1 any plane
section of K is an ellipse. Hence K is an ellipsoid due to the following lemma.

Lemma 3.4. Let K be a bounded open convex set in R
n (n ≥ 2). Then the

following assertions are equivalent:
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(i) K is an ellipsoid.
(ii) For each 2-dimensional plane H which meets the interior of K, the

intersection K ∩H is an ellipse.

This lemma is a week version of Lemma 12.1 on page 226 of [17].

4 Ptolemaic inequality

Let M be a metric space. For points x and y in M , let xy denote the distance
between x and y. The metric space M is called Ptolemaic if for each quadruple
of points x1, x2, x3, x4 in M the Ptolemaic inequality

x1x2 · x3x4 + x1x4 · x2x3 ≥ x1x3 · x2x4

holds. If the inequality holds only in some neighborhood of each point, the
space M is called locally Ptolemaic. Kay [23] proved that hyperbolic geome-
try is Ptolemaic and using this property to characterize hyperbolic geometry
among Hilbert geometries.

Theorem 4.1 (Kay). Let K be a bounded open convex set in R
n (n ≥ 2) with

a Hilbert metric dK . K is an ellipsoid if and only if K is locally Ptolemaic.

The idea of the proof is as follows.

Definition 4.2. The metric dK is associated to a Finsler metric FK on K as
follows. For any p ∈ K and v ∈ TpK = R

n,

FK(p, v) :=
1

2
||v||(

1

||p− p−||
+

1

||p− p+||
)

where p− (respectively p+) is the intersection point of the half line p + R
−v

(respectively p+ R
+v) with ∂K and || · || is the Euclidean norm of Rn.

Lemma 4.3 (Kay). If a Hilbert metric is local Ptolemaic, then its tangent
space at any point is also Ptolemaic.

Lemma 4.4 (Schoenberg [30]). A Finsler metric is Riemannian (the unit
sphere of its tangent space is an ellipsoid) if and only if it is Ptolemaic.

Lemma 4.5 (Kay, Theorem 2 in [23]). Perpendicularity under a Hilbert metric
coincides with perpendicularity under its associated Finsler metric.

Therefore Theorem 4.1 is implied by Theorem 3.1 (Kelly-Paige): if (K, dK)
has the symmetry of perpendicularity, K is an ellipsoid.

As a corollary, we obtain the following basic fact in Hilbert geometry:
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Corollary 4.6 (page 296 in [23]). A Hilbert geometry is Riemannian if and
only if it is hyperbolic.

5 Curvature

In a Hilbert geometry, the curvature sign at a point is defined in a qualitative
rather than a quantitative sense.

Definition 5.1. Let K be a bounded open convex set in R
n ((n ≥ 2)) with

a Hilbert metric dK . The curvature at p ∈ K is respectively non-negative or
non-positive in the sense of Busemann if there exists a neighborhood U of p
such that for every x, y in U we have

2dK(x, y) ≥ dK(x, y),

respectively

2dK(x, y) ≤ dK(x, y),

where x, y are the midpoints respectively of the Euclidean line segments from
p to x and p to y under dK .

The curvature is said to be determinate at a point if it is either positive or
negative at that point. The curvature is said to be indeterminate at a point if
it is neither positive nor negative.

Kelly and Straus [25] charactered hyperbolic geometry using curvature of
Hilbert geometries.

First, it is established in the 2-dimensional case.

Theorem 5.2 (Kelly–Straus). Let K be a bounded open convex set in R
2 with

a Hilbert metric dK . K is an ellipse if and only if the curvature is determinate
everywhere in K.

Since hyperbolic space has negative curvature, this Theorem implies in
particular that ifK has everywhere determinate curvature, then this curvature
is non-positive.

The proof use the properties of a projective center of K.
Consider the projective space P 2(R) as R

2 plus ∞. Then K can be con-
sidered in P 2(R). A point p is called a projective center of K if there is a
projective transformation f : P 2(R) → P 2(R) such that f(K) ⊂ R

2 is a
centrally symmetric convex domain with center f(p).

Lemma 5.3 (Kelly–Straus). If p is a point of determinate curvature then it
is a projective center.
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Therefore Theorem 5.2 is true due to the following characterization of an
ellipse.

Lemma 5.4 (Kajima [21]). Let Γ be a simple closed convex curve in R
2. If

every point in Γ is a projective center, then Γ is the boundary of an ellipse.

Theorem 5.2 is easily generalized to higher dimensions.

Theorem 5.5 (Kelly–Straus). Let K be a bounded open convex set in R
n

(n ≥ 2) with a Hilbert metric dK . K is an ellipsoid if and only if the curvature
is determinate everywhere in K.

In fact, if the curvature of (K, dK) is determinate everywhere, the curvature
of any plane section of K is determinate everywhere. Thus by Theorem 5.2
any plane section of K is an ellipse. Hence K is an ellipsoid due to Lemma
3.4.

As a corollary, we get Egloff’s result [14]:

Corollary 5.6. A Hilbert geometry (K, dK) satisfies the CAT (0) condition if
and only if K is an ellipsoid.

For the notion of CAT (0) metric spaces, see, for example, the book [7].
This corollary follows from Theorem 5.5 since every geodesic metric space
satisfying CAT (0) has non-positive curvature in the sense of Busemann.

6 Median

The following is a well-known fact in constant sectional curvature geometry
(see [16] Chapter 7, especially problem K-19):

The three medians of any triangle pass through one point.
Guo [18] proved that this property characterizes hyperbolic geometry among

Hilbert geometries.

Theorem 6.1. Let K be a bounded open convex set in R
n (n ≥ 2) with a

Hilbert metric dK . K is an ellipsoid if and only if the three medians of any
triangle in (K, dk) pass through one point.

To prove the result, it is enough to verify it for n = 2.
One idea used in the proof is Fritz John’s ellipse [20].

Lemma 6.2 (John). Any bounded open convex set K in R
2 contains a unique

ellipse E with maximal Euclidean area. Furthermore ∂K∩∂E contains at least
three points.
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7 Isometry group

Let K be a bounded open convex set in R
n (n ≥ 2) with associated Hilbert

metric dK . Denote by Isom(K, dk) the isometry group of (K, dK). The action
of a discrete subgroup Γ of Isom(K, dk) on K is called proper if the quotient
topological space K/Γ is Hausdorff.

In 1960, Benzécri [1] characterized hyperbolic geometry using properties of
the action of discrete subgroups of Isom(K, dk).

Theorem 7.1 (Benzécri). Assume ∂K is strictly convex. If (K, dK) admits
a proper action of a discrete subgroup of Isom(K, dk) such that the quotient is
compact, then K is an ellipsoid.

The condition that ∂K is strictly convex is necessary. For example, if K is
a triangle, there exist discrete subgroups of Isom(K, dk) whose actions on K
are proper and the quotients are compact.

We also quote the following generalization of Benzécri’s result.

Theorem 7.2 (Benoist, Proposition 6.2 in [2]). If the support of the curvature
on ∂K has positive measure, then (K, dK) admits a proper action of a discrete
subgroup of Isom(K, dk) such that the quotient is compact if and only if K is
an ellipsoid.

Colbois and Verovic [10] obtained the following generalization of Benzécri’s
result in the case of convex domains with smooth boundaries.

Theorem 7.3 (Colbois–Verovic). Let K be a bounded open convex set in R
n

(n ≥ 2) whose boundary ∂K is a hypersurface of class C3 which is strictly
convex (in the sense that the Hessian is positive definite). Then if ∂K is not
an ellipsoid, any discrete subgroup of the isometry group Isom(K, dk) whose
action on K is proper is finite.

Recall that FK(p, v) is the associated Finsler metric (Definition 4.2). To
any p ∈ K, let

BK(p) = {v ∈ R
n|FK(p, v) ≤ 1}

be the open unit ball in the tangent space TpK. Let ωn be the Euclidean
volume of the open unit ball of the standard Euclidean space Rn. The density
function σ : K → R is defined by

σ(p) =
ωn

Vol(BK(p))
,

where Vol is the canonical Lebesgue measure of Rn.
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Definition 7.4. The Hilbert measure on K is defined as

µK(A) =

∫
A

σ(p)dp

for any Borel set A of K.

Corollary 7.5 (Colbois–Verovic). Let K be as above. If ∂K is not an ellip-
soid, then (K, dK) does not allow quotients of finite volume by discrete sub-
groups of Isom(K, dk) whose action on K is proper.

The idea of the proof of Theorem 7.3 is as follows. First, if an infinite group
of Isom(K, dk) had a proper action on K, then every point of K is sent to ∂K.
Then, the Finsler metric FK(p) is approaching a Riemannian metric when the
point p is approaching ∂K. Thus FK is identified as the Riemannian metric
which is the limit of a sequence of Riemannian metrics. To continue the proof
of Theorem 7.3, the following lemma is applied (see, for example, Busemann
[6], page 85).

Lemma 7.6 (Beltrami, 1866). Let a connected open set X of the projective
space P (Rn+1) be metrised so that the metric is Riemannian and the geodesics
lie on projective lines. Then the sectional curvature of this Riemannian metric
is constant.

Since (K, dK) is non compact, the curvature of dK is non-positive. By
a theorem of Busemann ([6], page 269), the metric space (K, dK) has non-
positive curvature in the sense of Busemann (see Definition 5.1). Theorem 5.2
(Kelly–Straus) implies that K is an ellipsoid.

8 Ideal triangles

A triangle in K has three vertices in K with any two vertices joined by a
geodesic. When the three vertices of a triangle in K are on ∂K, it becomes
an ideal triangle in K.

In hyperbolic geometry, the area of any ideal triangle is a constant: π.
In a Hilbert geometry, the area of an ideal triangle is calculated using the

Hilbert measure (see Definition 7.4). In [12], the authors characterized an
ellipsoid using the area of ideal triangles.

Theorem 8.1 (Colbois–Vernicos–Verovic). Let K be a bounded open convex
set in R

n (n ≥ 2) with a Hilbert metric dK . If the area of every ideal triangle
in (K, dK) is a constant, K is an ellipsoid.

Fritz John’s ellipse, Lemma 6.2, is also used in the proof.
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9 Spectrum: a conjecture

Let K be a bounded open convex set in R
n (n ≥ 2) with associated Hilbert

metric dK . Recall that FK(p, v) is the associated Finsler metric of (K, dK)
(see Definition 4.2). Let lp be a linear form on the tangent space TpK. Define

||lp||
∗

K = sup{lp(v) : v ∈ TpK,FK(p, v) = 1}.

Recall that µK is the Hilbert measure on K (see Definition 7.4).
Using the Raleigh quotients, the bottom of the spectrum of K is defined as

λ1(K) = inf

∫
K
||dfp||

∗2
K dµK(p)∫

K
f2(p)dµK(p)

where the infimum is taken over all non zero lipschitz function with compact
support in K.

Theorem 9.1 (Vernicos [34]).

λ1(K) ≤
(n− 1)2

4
.

It is natural to ask whether the bottom of the spectrum can characterize
hyperbolic geometry. The following conjecture is due to B. Colbois.

Conjecture. If λ1(K) = (n−1)2

4 , then K is an ellipsoid.
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de Théorie Spectrale et Géométrie. Vol. 23. Année 2004-2005, Sémin. Théor.
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