
Chapter 6

Optical Properties of Solids Over a

Wide Frequency Range

6.1 Kramers–Kronig Relations
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Measurement of the absorption coefficient (Chapter 11) gives the imaginary part of the
complex index of refraction, while the reflectivity is sensitive to a complicated combination
of ε1(ω) and ε2(ω). Thus from measurements such as αabs(ω) we often have insufficient
information to determine ε1(ω) and ε2(ω) independently. However, if we know either ε1(ω)
or ε2(ω) over a wide frequency range, then ε2(ω) or ε1(ω) can be determined from the
Kramers–Kronig relation given by

ε1(ω) − 1 =
2

π
P

∫

∞

0

ω′ε2(ω
′)

ω′2 − ω2
dω′ (6.1)

and

ε2(ω) = −
2

π
P

∫

∞

0

ω′ε1(ω
′)

ω′2 − ω2
dω′ (6.2)

in which P denotes the principal value. The Kramers–Kronig relations are based on causal-
ity, linear response theory and the boundedness of physical observables.

The Kramers–Kronig relations relate ε1(ω) and ε2(ω) so that if either of these functions
is known as a function of ω the other is completely determined. Because of the form of these
relations (Eqs. 6.1 and 6.2), it is clear that the main contribution to ε1(ω) comes from the
behavior of ε2(ω

′) near ω′ ≈ ω due to the resonant denominator in these equations. What
this means is that to obtain ε1(ω), we really should know ε2(ω

′) for all ω′, but it is more
important to know ε2(ω

′) in the frequency range about ω than elsewhere. This property
is greatly exploited in the analysis of reflectivity data, where measurements are available
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over a finite range of ω′ values. Some kind of extrapolation procedure must be used for
those frequencies ω′ that are experimentally unavailable. We now give a derivation of the
Kramers–Kronig relations after some introductory material.

This theorem is generally familiar to electrical engineers in another context. If a system
is linear and obeys causality (i.e., there is no output before the input is applied), then the
real and imaginary parts of the system function are related by a Hilbert transform. Let us
now apply this causality concept to the polarization in a solid resulting from the application
of an optical electric field. We have the constitutive equation which defines the polarization
of the solid:

ε ~E = ~D = ~E + 4π ~P (6.3)

so that
~P =

ε − 1

4π
~E ≡ α(ω) ~E (6.4)

where α(ω) defines the polarizability, and ~P is the polarization/unit volume or the response
of the solid to an applied field ~E. The polarizability α(ω) in electrical engineering language
is the system function

α(ω) = αr(ω) + iαi(ω) (6.5)

in which we have explicitly written the real and imaginary parts αr(ω) and αi(ω), respec-
tively. Let E(t) = E0δ(t) be an impulse field at t = 0. Then from the definition of a
δ-function, we have:

E(t) = E0δ(t) =
E0

π

∫

∞

0−
cos ωtdω. (6.6)

The response to this impulse field yields an in-phase term proportional to αr(ω) and an
out-of-phase term proportional to αi(ω), where the polarization vector is given by

~P (t) =
E0

π

∫

∞

0−

[

αr(ω) cos ωt + αi(ω) sin ωt

]

dω, (6.7)

in which α(ω) is written for the complex polarizability (see Eq. 6.5). Since ~P (t) obeys
causality and is bounded, we find that the integral of α(ω)e−iωt is well behaved along the
contour C ′ as R → ∞ and no contribution to the integral is made along the contour C ′ in
the upper half plane (see Fig. 6.1). Furthermore, the causality condition that ~P (t) vanishes
for t < 0 requires that α(ω) have no poles in the upper half plane shown in Fig. 6.1.

To find an explicit expression for α(ω) we must generate a pole on the real axis. Then
we can isolate the behavior of α(ω) at some point ω0 by taking the principal value of the
integral. We do this with the help of Cauchy’s theorem. Since α(ω) has no poles in the upper
half-plane, the function [α(ω)/(ω − ω0)] will have a single pole at ω = ω0 (see Fig. 6.2). If
we run our contour just above the real axis, there are no poles in the upper-half plane and
the integral around the closed contour vanishes:

∮

α(ω)dω

ω − ω0

= 0. (6.8)

Let us now consider the integral taken over the various portions of this closed contour:

∫

C′

α(ω)

ω − ω0

dω +

∫

ω0−ǫ

−R

α(ω)

ω − ω0

dω +

∫

C

α(ω)

ω − ω0

dω +

∫

R

ω0+ǫ

α(ω)dω

ω − ω0

= 0. (6.9)
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Figure 6.1: Contours used in evaluating the complex polarizability integral of Eq. 6.7.

Figure 6.2: Contour used to evaluate Eq. 6.9.
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The contribution over the contour C ′ vanishes since α(ω) remains bounded, while 1
ω−ω0

→ 0
as R → ∞ (see Fig. 6.2). Along the contour C, we use Cauchy’s theorem to obtain

lim
ǫ→0

∫

C

α(ω)

ω − ω0

dω = −πiα(ω0) (6.10)

in which α(ω0) is the residue of α(ω) at ω = ω0 and the minus sign is written because the
contour C is taken clockwise. We further define the principal part P of the integral in the
limit R → ∞ and ǫ → 0 as

lim
R→∞

ǫ→0

∫

ω0−ε

−R

α(ω)

ω − ω0

dω +

∫

R

ω0+ǫ

α(ω)

ω − ω0

dω → P

∫

∞

−∞

α(ω)

ω − ω0

dω. (6.11)

The vanishing of the integral in Eq. 6.8 thus results in the relation

αr(ω0) + iαi(ω0) =
1

πi
P

∫

∞

−∞

αr(ω) + iαi(ω)

ω − ω0

dω. (6.12)

Equating real and imaginary parts of Eq. 6.12, we get the following relations which hold for
−∞ < ω < ∞;

αr(ω0) =
1

π
P

∫

∞

−∞

αi(ω)

ω − ω0

dω (6.13)

where αr(ω) is even and

αi(ω0) =
−1

π
P

∫

∞

−∞

αr(ω)

ω − ω0

dω (6.14)

where αi(ω) is odd.
We would like to write these relations in terms of integrals over positive frequencies. We

can do this by utilizing the even- and oddness of αr(ω) and αi(ω). If we now multiply the
integrand by (ω + ω0)/(ω + ω0) and make use of the even- and oddness of the integrands,
we get:

αr(ω0) =
1

π
P

∫

∞

−∞

αi(ω)(ω + ω0)

ω2 − ω2
0

dω =
2

π
P

∫

∞

0

ωαi(ω)dω

ω2 − ω2
0

(6.15)

αi(ω0) =
−1

π
P

∫

∞

−∞

αr(ω)(ω + ω0)

ω2 − ω2
0

dω = −
2

π
P

∫

∞

0

ω0αr(ω)dω

ω2 − ω2
0

. (6.16)

We have now obtained the Kramers–Kronig relations. To avoid explicit use of the principal
value of a function, we can subtract out the singularity at ω0, by writing

αr(ω0) + iαi(ω0) =
1

πi

∫

∞

−∞

(

α(ω) − α(ω0)

ω − ω0

)(

ω + ω0

ω + ω0

)

dω. (6.17)

Using the evenness and oddness of αr(ω) and αi(ω) we then obtain

αr(ω0) =
2

π

∫

∞

0

ωαi(ω) − ω0αi(ω0)

ω2 − ω2
0

dω (6.18)

and

αi(ω0) = −
2

π

∫

∞

0

ω0αr(ω) − ω0αr(ω0)

ω2 − ω2
0

dω. (6.19)
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To obtain the Kramers–Kronig relations for the dielectric function itself, just substitute

ε(ω) = 1 + 4πα(ω) = ε1(ω) + iε2(ω) (6.20)

to obtain

ε1(ω0) − 1 =
2

π

∫

∞

0

ω′ε2(ω
′) − ω0ε2(ω0)

ω′2 − ω2
0

dω′ (6.21)

ε2(ω0) =
−2

π

∫

∞

0

ω0ε1(ω
′) − ω0ε1(ω0)

ω′2 − ω2
0

dω′. (6.22)

The Kramers–Kronig relations are very general and depend, as we have seen, on the
assumptions of causality, linearity and boundedness. From this point of view, the real and
imaginary parts of a “physical” quantity Q can be related by making the identification

Qreal → αr (6.23)

Qimaginary → αi. (6.24)

Thus, we can identify ε1(ω) − 1 with αr(ω), and ε2(ω) with αi(ω). The reason, of course,
why the identification αr(ω) is made with [ε1(ω) − 1] rather than with ε1(ω) is that if
ε2(ω) ≡ 0 for all ω, we want ε1(ω) ≡ 1 for all ω (the dielectric constant for free space).

Thus, if we are interested in constructing a Kramers–Kronig relation for the optical
constants, then we again want to make the following identification for the optical constants
(ñ + ik̃)

[ñ(ω) − 1] → αr(ω) (6.25)

k̃(ω) → αi(ω). (6.26)

From Eqs. 6.21 and 6.22, we can obtain the Kramers–Kronig relations for the optical
constants ñ(ω) and k̃(ω)

ñ(ω) − 1 =
2

π

∫

∞

0

ω′k̃(ω′) − ωk̃(ω)

ω′2 − ω2
dω′ (6.27)

and

k̃(ω) = −
2

π

∫

∞

0

ωñ(ω′) − ωñ(ω)

ω′2 − ω2
dω′ (6.28)

where we utilize the definition relating the complex dielectric function ε(ω) to the optical
constants ñ(ω) and k̃(ω) where ε(ω) = [ñ(ω) + ik̃(ω)]2.

It is useful to relate the optical constants to the reflection coefficient r(ω) exp[iθ(ω)]
defined by

r(ω) exp[iθ(ω)] =
ñ(ω) − 1 + ik̃(ω)

ñ(ω) + 1 + ik̃(ω)
(6.29)

in which the conjugate variables are lnr(ω) and θ(ω) and the reflectivity is given as R(ω) =
r2(ω). From Eq. 6.29, we can then write

ñ(ω) =
1 − r2(ω)

1 + r2(ω) − 2r(ω) cos θ(ω)
(6.30)

k̃(ω) =
2r(ω) sin θ(ω)

1 + r2(ω) − 2r(ω) cos θ(ω)
(6.31)
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so that once r(ω) and θ(ω) are found, the optical constants ñ(ω) and k̃(ω) are determined.
In practice r(ω) and θ(ω) are found from the reflectivity R which is measured over a wide
frequency range and is modeled outside the measured range. A Kramers–Kronig relation
can be written for the conjugate variables ln r(ω) and θ(ω), from which θ(ω) is found:

ln r(ω) =
2

π

∫

∞

0

ω′θ(ω′) − ωθ(ω)

ω′2 − ω2
dω′ (6.32)

θ(ω) = −
2ω

π

∫

∞

0

ln r(ω′) − ln r(ω)

ω′2 − ω2
dω′. (6.33)

where lnR(ω) = 2 ln r(ω).
From a knowledge of the frequency dependent reflectivity R(ω), the reflection coefficient

r(ω) and the phase of the reflectivity coefficient θ(ω) can be found. We can then find the
frequency dependence of the optical constants ñ(ω) and k̃(ω), which in turn yields the
frequency dependent dielectric functions ε1(ω) and ε2(ω). Starting with the experimental
data for the reflectivity R(ω) for germanium in Fig. 6.3(a), the Kramers–Kronig relations
are used to obtain results for ε1(ω) and ε2(ω) for germanium as shown in Fig. 6.3(b).

The Kramers–Kronig relations for the conjugate variables ε1(ω) and ε2(ω); ñ(ω) and
k̃(ω); and ln r(ω) and θ(ω) are widely used in quantitative studies of the optical properties
of specific materials, as for example germanium in Fig. 6.3.

6.2 Optical Properties and Band Structure

If we are interested in studying the optical properties near the band edge such as the onset
of indirect transitions or of the lowest direct interband transitions, then we should carry out
absorption measurements (Chapter 5) to determine the absorption coefficient αabs(ω) and
thus identify the type of process that is dominant (indirect, direct, allowed, forbidden, etc.)
at the band edge. However, if we are interested in the optical properties of a semiconductor
over a wide energy range, then we want to treat all bands and transitions within a few
eV from the Fermi level on an equal footing. Away from the band edge, the absorption
coefficients become too high for the absorption technique to be useful, and reflectivity mea-
surements are made instead. Experimentally, it is most convenient to carry out reflectivity
measurements at normal incidence. From these measurements, the Kramers–Kronig anal-
ysis (see §6.1) is used to get the phase angle θ(ω) for some frequency ω0, if the reflection
coefficient r(ω) is known throughout the entire range of photon energies

θ(ω0) = −
2ω0

π

∫

∞

0

ln r(ω) − ln r(ω0)

ω2 − ω2
0

dω. (6.34)

From a knowledge of r(ω) and θ(ω), we can then find the frequency dependence of the optical
constants ñ(ω) and k̃(ω) using Eqs. 6.30 and 6.31 and the frequency dependent dielectric
function

ε1(ω) = ñ2 − k̃2 (6.35)

ε2(ω) = 2ñk̃. (6.36)

As an example of such an analysis, let us consider the case of the semiconductor germanium.
The normal incidence reflectivity is given in Fig. 6.3(a) and the results of the Kramers–
Kronig analysis described above are given for ε1(ω) and ε2(ω) in Fig. 6.3(b).
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Figure 6.3: (a) Frequency depen-
dence of the reflectivity of Ge
over a wide frequency range. (b)
Plot of the real [ε1(ω)] and imag-
inary [ε2(ω)] parts of the dielec-
tric functions for Ge obtained by
a Kramers–Kronig analysis of the
reflectivity data in part (a).
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Corresponding to the structure in the reflectivity, there will be structure observed in the
real and imaginary parts of the dielectric function. These structures in the reflectivity data
are then identified with special features in the energy band structure. It is interesting to
note that the indirect transition (0.66 eV) from the Γ25′ valence band to the L1 conduction
band (see Part I of the notes) has almost no impact on the reflectivity data. Nor does the
direct band gap, which is responsible for the fundamental absorption edge in germanium,
have a significant effect on the reflectivity data. These effects are small on the scale of the
reflectivity structures shown in Fig. 6.3(a) and must be looked for with great care in a narrow
frequency range where structure in the absorption data is found. The big contribution to the
dielectric constant comes from interband transitions L3′ → L1 for which the joint density
of states is large over large volumes of the Brillouin zone. The sharp rise in ε2(ω) at 2.1 eV
is associated with the L3′ → L1 transition. For higher photon energies, large volumes of
the Brillouin zone contribute until a photon energy of about 5 eV is reached. Above this
photon energy, we cannot find bands that track each other closely enough to give interband
transitions with intensities of large magnitude.

6.3 Modulated Reflectivity Experiments

If we wish to study the critical point contributions to the optical reflectivity in more detail,
it is useful to carry out modulated reflectivity measurements. If, for example, a small
periodic perturbation is applied to a sample then there will be a change in reflectivity at the
frequency of that perturbation. The frequency dependence of this change in reflectivity is
small (parts in 103 or 104) but it is measurable. As an example, we show in Fig. 6.4, results
for the reflectivity R(ω) and for the wavelength modulated reflectivity (1/R)(dR/dE) of
GaAs. Structure at E0 would be identified with the direct band gap, while the structure
at E0 + ∆0 corresponds to a transition from the split-off valence band at ~k = 0 which
arises through the spin-orbit interaction. The transitions at E1 and E1 + ∆ correspond to
Λ point and L point transitions, also showing spin-orbit splitting. Also identified in Fig. 6.5
are the E0′ transition from the ∆7 valence band to the ∆6 conduction band, and the E2

transition from X5 → X5 at the X point. Although the band structure and notation given
in Fig. 6.5 applies to Ge in detail, the results for other group IV and III–V semiconductors
is qualitatively similar, with values for the pertinent interband transitions given in Table 6.1
for Si, Ge, GaAs, InP and GaP.

In the vicinity of a critical point, the denominator in the joint density of states is small,
so that a small change in photon energy can produce a significant change in the joint density
of states. Hence, modulation spectroscopy techniques emphasize critical points. There are
a number of parameters that can be varied in these modulation spectroscopy experiments:

electric field – electro-reflectance
wavelength – wavelength modulation
stress – piezoreflectance
light intensity – photo-reflectance
temperature – thermo-reflectance.

The various modulated reflectivity experiments are complementary rather than yielding
identical information. For example, certain structures in the reflectance respond more
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