Periodic Systems Condensed Syllabus

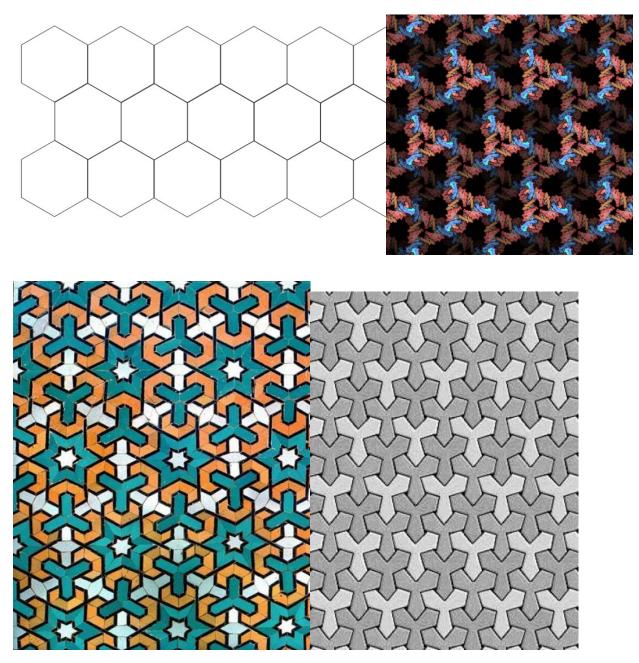
Course summary: http://www.physics.oregonstate.edu/~grahamat/COURSES/ph427/

This paradigm introduces the fundamental vibrational states of classical periodic systems, and the fundamental quantum states of periodic quantum systems. This knowledge forms the basis of the theory of solid state physics. Many of the systems we will study have relevance to photonic crystals, circuit theory and other engineering applications.

Instructor

Matt W. Graham Office hours: Mon 2-3pm, Wed 2-3pm, 375 Weniger Hall (Class in Rm 212) Teaching/learning assistant: Mackenzie Lenz and Brendan Vischer

Problem Sets


Problem sets are typically due at 5pm. Late problems sets will be graded, until solutions have been posted. A late penalty of 10% (min) to 30%(max) will applied each day at the discretion of the grader for homework late for one day of M-F "work week". >3 day late problems sets must still be submitted even though we cannot give formal credit for them.

Final: See university final exam schedule for exam time. You are allowed to bring a calculator and an aid sheet. Cheat aid size = 8.5"x11", one side, handwritten and submitted w/your exam.

~Feb 2016 ~				
Mon	Tue	Wed	Thu	Fri
22	23	24	25	26
Coupled	Coupled	-PS1 (0,1,2) due	Dispersion for	Lattices at finite
Oscillators	Oscillators	Dispersion for	1D mass/spring	temperature
		1D mass/spring	system	-PS1(3,4)due
	PhET Lab 1	system		
29	1	2	3	4
		-PS2 (1,2) due	Linear	-PS2 due
Phonon	Lattices	Double potential	combination of	
Dispersion & heat	(diatomic	well	atomic orbitals	Electronic band
capacity	materials, final		(LCAO)	structure
-Journal	topics)			
proposals due			PhET Lab 2	
7	8	9	10	11
			Electronic Band	Review, session I
Journal	Journal	-PS3 (1,2) due	Structure	
Presentations	Presentations			-PS3 due
		Tight-Binding		
	- LCAO model	Model		
14	15	16	17	18
FINAL EXAM,				
PH427				
304 and 304F				

Grade break-down: Homework 35%; Journal Club Talk 15%; Final 50%.

EXERCISE: Draw an example "unit cell" on the following.

Deep Physical Idea: Once you successful describe the physics inside a single unit cell, you have successfully described the complete physics the extended system.

(think back to our definition of Noether's Theorem)