The 3 Distribution Functions

- Classical particles:
 - Maxwell-Boltzmann: $f_{MB}(n,T) = \exp(-E(n)/k_BT)$
- Fermions (half-integer spins, e.g. electrons)

- Fermi-Dirac:
$$f_{FD}(n,T) = \frac{1}{\exp([E(n)-E_F]/k_BT)+1}$$

• Bosons (integer spins, e.g. photons, phonons)

- Bose-Einstein:
$$f_{BE}(n,T) = \frac{1}{\exp(E(n)/k_BT)-1}$$

Classical vibrations of atoms in a crystal	Quantum wavefunctions of e electrons in a crystal
Normal modes involve <i>every</i> atom is the crystal	eigenstate wavefunctions spread the probability density over the entire crystal
One natural frequency is associated with each normal mode	Each normal mode has a discrete electro frequency
each $k=2\pi/\lambda$ describes the normal mode	each <i>k</i> describes the eigenstate wavefunction