

Stephen Lower

ParaCon 2016 What went well?

Everyone was able to extract some *novel* science, and accepted the challenge

No presentation was a "train-wreck"; even if it were given a national conference

Everyone managed to loose ALL their audience at some point

In 5 min: you only have time to communicate ONE message

"the science talk"

you are not a presenter or a teacher! your role is "global authority"

Science Talk Advice

Rule 1: Take care of your audience
Rule 2: Communicate what is new
Rule 3: People will believe you
(proofs are for papers)

Interpretation

- The electron is subject to <u>internal</u> forces from the lattice (ions and core electrons) AND <u>external</u> forces such as electric fields
- In a crystal lattice, the net force may be <u>opposite</u> the external force, however:

$$F_{ext} = -q\mathcal{E}$$

$$F_{int} = -dE_p/dx$$

$$F_{int} = -dE_p/dx$$

Interpretation

- electron acceleration is not equal to F_{ext}/m_e , but rather...
- $a = (F_{ext} + F_{int})/m_e = F_{ext}/m^*$
- The dispersion relation E(K) compensates for the internal forces due to the crystal and allows us to use *classical* concepts for the electron as long as its mass is taken as m^{*}

 \leq F = -2

$$F_{int} = -dE_p/dx$$

The Hole

- The hole can be understood as an electron with negative effective mass
- An electron near the top of an energy band will have a negative effective mass
- A negatively charged particle with a negative mass will be <u>accelerated</u> like a positive particle with a positive mass (a hole!)

Without the crystal lattice, the hole cannot exist. It is an artifact of the periodic potential (E_p) created by the crystal.

E(K) and E(x)

Generation and Recombination of electron-hole pairs

Non-cubic lattices:

(FCC, BCC, diamond, etc.)

Different lattice spacings lead to different curvatures for E(K) and <u>effective masses</u> that depend on the direction of motion.

Direct Energy Gap

Indirect Energy Gap

Silicon

Light Emission

- energy (E) and momentum ($\hbar K$) must be conserved
- energy is released when a quasi-free electron recombines with a hole in the valence band:

 $\Delta E = E_g$

– does this energy produce light (photon) or heat (phonon)?

- indirect bandgap: ΔK is large
 - but for a direct bandgap: $\Delta K=0$
- photons have very low momentum
 - but lattice vibrations (heat, phonons) have large momentum
- Conclusion: recombination (e⁻+h⁺) creates
 - *light* in direct bandgap materials (GaAs, GaN, etc)
 - *heat* in indirect bandgap materials (Si, Ge)

