Chapter 1

COUPLED ONE-DIMENSIONAL OSCILLATORS

1.1 Introduction

Much of the interesting vibrationa behavior of periodic sysems is reveded by the classcd
oxcillations of chains of masses connected by springs that obey Hooke's Law. Recdl tha
Hooke's Law smply means that when a mass connected to a spring is displaced from its
equilibrium pogtion, there is a restoring force, F, directly proportiond to the displacement vy, i.e.
F=-ky. We will see that the motions of such chains can be andyzed using the physcs of
sample harmonic oscillators and the concept of norma modes.

1.2 Two coupled simple harmonic oscillators

We begin by reviewing the smple case of two masses coupled by Hooke's Law springs. We
wigh to find the possble motions of such a sysem. Later, we will extend this to linear chains
containing finite and infinite numbers of masses.  This sysem is a modd for other types of
coupled oscillations such as coupled LC circuits, coupled pendulums, etc. The governing
equations for dl sysems conssting of two coupled harmonic oscillators can be put into the same
mathematica form. This has the powerful implication that once we have solved for the behavior
of one such system, we have effectively solved for dl of them.

1.2.1 Equations of motion

Newton's second law of motion tells us how a point mass moves in response to aforce:
- dp_ df
F=P_ m——
dt dt
Thus, if we know what F is we can, in principle, solve the differentid equation to get the
trajectory r(t)!



Now, let y be the digdlacement from equilibrium in the longitudind direction (dong the line
connecting the masses) and apply Hooke'sLaw, F=-Ky :
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positive direction

We adopt a systematic approach and define displacements to the right to be positive. Then

Forceonmass 1= - (forcetoleft) + (forcetoright) = F, = - ky; +ki(Yo -y )

Hint: check each term for the sign of the displacement!

Using our notation, Newton's Law is Fy 5y =My y"y5y , o let’s plug in the forces and, for

smplicity, assume that the massesareequd (m;, = m, =m):
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We see that the result isa pair of coupled ordinary differential equationsfor y ;and y .
They are coupled because the second derivetive of y ; ory , (accderation of agiven mass)
depends on both y ; and y , . Another way of expressing this result is the matrix equation
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1.2.2 Normal modes

To proceed further, we make the important assumption that there are particular motions of the
system in which both masses oscillate with the same frequency. These specid motions are cdled
normal modes. We will see as we go dong tha for one-dimensond chains there are exactly as
many norma modes as there are masses in the sysem. Each norma mode corresponds to
motion with a dngle frequency, but the frequencies of norma modes can be (an usudly are)
different. Once we have identified the motions associated with the norma modes and have
found the norma mode frequencies, we can express the generd motion of any mass in terms of a
superposition of norma modes.

To find the norma mode frequencies, assume that both masses move with the same frequency

= At
w: A . The coefficients A and A,are complex. Eventudly, we will take the red
y 5 = A"
parts to get the actud motion. The mathematical task is to find the possble vaues of w and the
relationship between the coefficients for each w.

Note that for our assumed time dependence of the displacements, the second derivatives of the
displacements (the accelerations) are proportiond to the displacements themselves:

i — 2 A QW —
y,=-w?Ae" =-wd
2 A AW
Yy, =-wiAeM =-wh,
If we subgtitute these expressions for y ;and y , in the equations of motion we get the convenient

result that the coupled differential equations have been converted to a par of coupled linear
algebraic equations. In matrix form,
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Thisis an eigenvalue equation of the form
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whose eigenvaues will be the norma mode frequencies (w-values) we seek.



1.2.3 Frequencies of normal modes: eigenvalues

Tofind eigenvalues, Wesetdet(A - WZI):O. Thisyidds
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Although this appears to be a quartic equation, it is redlly just a quadratic equation for w?:
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Thus there are two eigenvaues (“elgenfrequencies’) and two corresponding norma modes. (We
anticipated this with the statement that there would be as many norma modes as there are
Masses.)

Taking the solution with the minus sign we get alow frequency mode with frequency

w _\/k+k12_k12_\/K
low =" m m \Im

Thisfrequency isindependent of the spring constant ki of the coupling spring! What does this
suggest about the motion associated with the low frequency norma mode?

If we take the plus Sgn, we get the frequency of the high frequency mode:

k +k12 k12 k +2K o
high = m m m

The high frequency does depend on the coupling k12, What isthe implication for this mode?
1.2.4 Symmetries of normal modes: eigenvectors
We don't redlly have to guess about the nature of the motions of the two norma modes. If we

find the egenvectors of the norma modes we will know the relation between the coefficients A;
and A, for agiven mode. Thiswill define the symmetry of the motion.



The procedure is the subdtitute a particular eigenfrequency into the matrix equation and find the
relationship between A; and A, (amplitudes of the displacements) for that mode.

For the low frequency mode:
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sothat y, =Yy, and therefore A =A,. The mode is symmetric with the masses moving in

phase. Since the masses maintain their separaion in this mode, the frequency is independent of
the spring congtant of the coupling spring.

Ifwelad A=A = A)e” with Ao real we can express the digplacements for the low frequency

ij o

mode in the form 0_Fhe ;I M . The red congants Ap and | are determined by the
g’ 25 &4€' B

initid conditions. To get the actud digplacements, take the red parts.

. . k
Re(y ) =Re(y 2)=A0(COSJ coswt - sinj sinwt)  w= —

6 j ,k+_2k12
For the high frequency mode, the same procedure yields ae,obe' 2' t.
5’ 20 & A 5
This mode is anti-symmetric with the masses moving out of phase (equa and opposte
displacements). In this mode, the coupling spring is dternatdly stretched and compressed so the
frequency must depend on the coupling constant k.

1.2.5 General motions: Principle of Superposition

We know that the sysem has 2 egenfrequencies, w,, for the symmetric mode in which
Y1=Y, ,and Wy, for the antisymmetric mode in which y ; =-y ,. If we start the system

with initid conditions corresponding to one of these modes, say by dislacing both masses
symmetricdly  (antisymmetricdly), then the sysem will osdllae with a sngle frequency

Wiow (Whigh)- For more generd initid conditions, both modes are will be excited and the system



will execute complex motion corresponding to a superpostion of the two egenfrequencies.
Applying the Principle of Superposition, we should be able to express the motions of masses 1
and 2 as

y 1 — AeiWat +BeIWbt and y2 :Aeiwat + Beint
where, for smplicity weletw,, =w, and Wyjq, =W, .

The amplitudes A, B, A¢and Bdare complex condants to be determined by the initid

conditions. (We will take the red pat when we need to.) However, these congtants are not
completely independent of each other.

We know, for example, that if B =B¢=0 <0 that the sysem is osdillating only with frequency
W, =W,, then the motion must be symmetric, i.e y, =y, P A¢=A. Smilaly, to get the

antisymmetric mode, weneed y ; =- y , b B&=- B. We can assure this by writing
y, =Ae" +Be™! and y, =Ae"! - Be™!

Putting in the complex nature of the coefficients explicitly, we see that we have 4 undetermined
congtants, the (redl) amplitudes Ay, B, and the phase factors, f,d.

yl(t)oneifeiwat +Boeideiwbt and y 2(t):AOeifeiwat _ Boeideiwbt
Now, let's chose a paticular set of initid conditions mass 1 a the equilibrium postion with

zero velocity and mass 2 digplaced a digance 2C, dso with zero velocity. Expressng this
dgebracdly we have

y,(0)= Re(AOeif + Boeid) =0 and y,(0)= Re(AOeif - Boe‘d) =2C

%{ :Re(iWaAoe‘f +inBoeid):O and V2
0

:ReﬁwaAOe” - inBoeid):O
t, dt

Rewriting the two equations for the velocity initid conditions by taking the red parts of the
exponentias, we find

- WAy sinf - w,Bysind=0 and - w,A,sinf +w,B,sind=0
Adding and subtracting these two equations gives

- 2w Apsinf =0 and - 2wB,sind=0
from which we conclude f =d =0. If we had forgotten about the velocity initid condition, it

would have been the same as assuming A and B red, which would have been OK for this case.
But this can't be donein generd!

Now, go back to the displacement initia conditions, which now reed,

A, +B; =0 and A,-B;=2C



whence, Ay =-B;, = C.

So now our equations for the displacements read
y.(t)= RelC(e et _ gt ] =C|cos(w,t)- cos(w,t)]

y,(t)= Re[C(e Vel 4 @Mt )] =Clcos(w,t) +cos(w,t)]

These are equivaent to

y(t)=2C sing( )tOS,ng(Wb w )[0
e 2 2

y,(t)=2C cosg( )t ‘_’Cosé‘(Wb w )tg
€ 2 2 e 2 [}

To show this takes a bit of agebra use the trig identities sin(x iy): SinXcosy x£cosy sin X
in the preceding equaions, cary out the multiplication, and introduce the identities
2ax0_1 1 a&x0_1 1

sin C-+==- =COSX and cos ¢-+=— +=-COSX.
e2g 2 2 elg
Beats

This result shows that the generd motion of the sysem congds of a high frequency oscillation

with frequency ( b ) modulated by a lower fequency (Wb_TWa The effect of the lower

frequency (frequency difference) term is known as “besats’ in anadogy to the throbbing sound that
is heard when two acoudtical tones with dightly different frequencies are heard smultaneoudy.
The mathematical description isidentica — superposition of two sines or cosines.

Thefunctiond formsof y 1(t) and y 2(t) are shown below for a case where H =0.1.
b a
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Notice that the “envelopes’ of the displacements for the two masses are 90° out of phase. When
mass 1 is osdllating with maximum amplitude, mass 2 has minimum amplitude and vice versa.



Energy is peiodicdly exchanged (with frequency w, - w,) between the two individud
harmonic oscillators.

Weak coupling limit

Recdl the expressions for the two eigenfrequencies:

k k +2k
Wiow = Wa :\/% and  Wpgnh =Wy :W/le

and recdl that it is the coupling (k;,) that distinguishes the two frequencies. (If k;,= 0, we
amply have two, completely independent smple harmonic oscillators)) Now, suppose that the

coupling is week, i.e. k;, <<k. Then, usng the goproximaion +1+e @l+%efor e<<l we

can write

The modulation frequency in this limit is M :wa%g which is directly proportiond
e [}

to the strength of the coupling.

Discussion question:
Given a par of identicd coupled mechanicd oscillators with known masses m, how could
you determine the strength of the coupling by an experiment?

1.3 Many coupled masses: the “monatomic” N-membered chain

Lab #1 is the study of chains of N masses using the CUPS
simulations programs.

The smulations sudied in Lab #1 yielded the following results:

1. Anexpeimentdly determined disperson rdation (frequency w versus wave vector k =
2p/l') for a5-mass chan.

2. Thedisperson rdation w(k) islinear a low frequency.

3. Thereisamaximum frequency for the norma modes of the chain.



4. The norma mode frequencies are repeated for higher wave vectors — no new physics for
k-values beyond the maximum in w(k).

Now let’s see how these results follow from an andysis of the mechanics of the chain using
Newton’s equation of motion.

1.3.1 Equations of motion

We continue with many masses coupled to their nearest neighbors by Hooke's Law springs and
find the possble longitudind mation of such a sysem. (Coupling with other sorings to next
neighbors is a homework example). This sysem is a mode for other types of coupled
oscillations (transverse motion of these masses, coupled LC circuts, pendulums.....)

Kk k1 k

n+1!

|
]
n-1 | n

Hooke's Law gives us the force on the n'" mass when it is displaced a distance y ,, from its
equilibrium pogdtion, F, =-Ky ,. We ae congdeing only longitudind motion (dong the chain)
in one dimenson. For the present, we assume that al masses m) and spring congtants K) are
equd. Later wewill rdax thisredtriction. Then theforceon massnis

Fn:_k(yn_yn-l)_ k(yn_yn+1)

Hint: again, check each term for the sign of the force relative
to that of the displacement

Now, apply Newton's equation of motion, F, =m,y" and plug in the forces for massn and its
nearest neighbors:

my“n-lz'kw n-l'yn-Z)' kwn-l'yn)
my"n:'k@n'yn-l)' k@n'yml)
My o =-KY ni =Y n) - KY per- Y ne2)
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1.3.2 Dispersion Relation

Once again, we have a st of coupled differentia equations. The acceeration of a particular
mass depends not only on its own displacement, hut dso those of its neighbors.  The route to a
solution is to assume, as we did for two coupled oscillators, that the system has a set of normd
modes in which al masses oscillate with the same frequency.

For a paticular norma mode with frequency w, the displacement of mass n can be expressed as
y n =A€"". The coeffidents A, give the amplitudes of the osdillations for the various masses
n and are, in genera, complex.

Note that the frequency has no subscript (particle labdl) — dl particles oscillate with the same
frequency in agiven norma mode.

Furthermore, as we saw in in Lab 1, the amplitudes of the paticdes oscillations form the
1k _

envelope of a sinusoid in the norma modes, so well further assumer Y = Ae'@ a_Ol)e'Wt

where na is the particle’s podstion dong the chain, and k =% is the “wave vector.” (In one-

dimenson, the “vector” property is expressed only by the sgn (x) of k; in a two- or three-

dimensond system, this is a true vector, k). The wavdength | is that of the envelope that
describes the ingtantaneous positions of the massesin that particular mode.

Subgtitute the norma mode solution into Newton's equation of motion:
- mwPAe ke idgint — (A\ei nka- id jwt _ - A (n- Dka- idéwt)_ K (Aeink& idgiwt _ Al (n+Dka- ideiwt)

mw? gnka = _ d(n-1)ka 4 oginka _ d(n+1ka

k
ika+ -ika('j
W :2—k§- i+:§(l- co§<a)
m 2 g m
w = Kgnzka
m 2
w(k)ZZ\/ESin@
m 2

Our assumption of wave-like, oscillatory norma modes has led usto a dispersion relation w(k).
Thisfunction is plotted below for w ., = ZJK =landa=1
m

11
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Fg. X. Digperson rdation w(k) for amonatomic chain (equal masses and spring

constants).

Important features of the dispersion relation:

1. Information is repested after k:E. This is cdled the Brillouin zone

a
boundary and corresponds to a wavelength of | =2a. Smdler wavdengths
are physicaly meaningless as we found in lab.

: : K .
2. There is a maximum frequency W, = 2\/% above which there are no wave-
like norma modes.

3. For gndl vadues of k, the disperson rdation is linear: W@Z\/%gk=vsk.

The proportiondity constant v, :a\/%is jus the speed of longituding

“sound” (long wavelength waves) dong the chain. Here “long wavelength’
meanska << 2p,or| >>a

The disperson rdation gives us the reation between w and k for the norma modes, but we have
not yet found the specific frequencies (and k-vaues) of the modes. These will depend on the
number of masses in the chain and the boundary conditions at the ends of the chain.

12



1.3.3 Boundary conditions: normal mode frequencies and wave vectors

To find paticular vdues of w and k for the norma modes, we need to specify boundary
conditions, and the total number of masses N. Let us introduce a new index q to labe the

frequency wq and wave vector kq of the g™ norma mode. Then, the dispersion relation for the

ao

monatomic chain becomes W q =Wmax SN €D 3
2

Fixed boundary conditions

One gpproach to finding the norma modes is to goply fixed boundary conditions. This means
that we fix the ends of the chain a dl times, i.e. we require the fictitious 0" and (N+1)" masses
to befixed. In this case, the norma modes will be standing waves.

Recal y p = Ae'@(& OI)ei""t. The boundary condition y =Re(Ae‘(ka’°'d)éWt):Oat dl times
. _ i(k0a-d)§ _ 2 VRPN -
requires that Ay = ReZAe o= ACOS( d) 0 which implies d = 5 Thus, for any

maess n on the chain, A, = Re(Aé (kna- p/ 2)): ACOS(kna— p/ 2): Asnkna. These are
the wave-like amplitudes of the egenmodes.

Now, at the other end of the chain, the boundary condition y 4, = Oimplies

As1 = Asnkg(N+1)a=0b ky(N+Da=gpb k =ﬁl
The mode index q has values 1, 2 ... N (N distinct modes) which will give N digtinct values of kq
and wg. Now that we have k; we can find the related frequencies, wg udng the dispersion
relation and our problem is solved. The digperson relaion, norma mode frequencies and wave
vectorsfor N = 5 areillugrated in the following plat.

13
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Figure X. Disperson rdation for the monatomic chain with norma mode frequencies and
wave vectorsfor thecase N =5 with fixed boundary conditions.

Important features of the normal modesfor fixed boundary conditions.

1. For q < 0, we get no new information, snce sn(x) = -9n(-x) and the entire
displacement is the same except for a phase which can be absorbed into the time
dependence.

2. Forg=N +1, ky+1 = p/aand A, = Asin(np):O for all n. Thisisa“null mode’” —
the displacements of adl masses are zero a dl times. This k-value (/a) defines the
Brillouin zone boundary.

3. For g > N +1, the frequencies repeat those for 1 £ g £ N due to the periodicity of the
dispersion relation.

14



Periodic boundary conditions

Periodic boundary conditions are an dternaive to fixed boundary conditions. Here we have
no requirement on the amplitude, but rather on the displacement as a whole.  We require only
that the motion of the 0" mass be the same as the motion of the (N+1)'", or generaly that the
motion of the n'"" mass be the same as the motion of the (N+n)'™:

Yn=Y nen+
i(kna-d)0 _ i(k(n+N+Da-d)0
b ngeAe( )B—RegeAe“ ) )5

P kna- d=k(n+N+Da-d+2pqg

which smplifiesto kg = + (szi)a (with no reqirement on d).

The norma modes and corresponding g-values for periodic boundary conditions are
compared with those for fixed boundary conditionsfor N =5in Figure X.
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Figure X. Disperson reation for the monatomic chain for N = 5 showing norma modes and

associated g-vaues for periodic boundary conditions (open points) and fixed boundary
conditions (closed points). Note that for periodic boundary conditions there are actudly N + 1 =
6 moving masses in the chain and 6 norma modes (explained below).
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Important features of the normal modesfor periodic boundary conditions:

1. We see that the k spacing has doubled (g = (N+1)/2 gives the Brillouin zone
boundary). Have we logt hdf the modes? No! In this case the different Sgns of g
ARE didinct. Pogtive and negetive g vaues correspond to oppositely propageating
travding waves. Thus q = #1, %2, ...., £(N+1)/2 give physcdly diginct modes
(now it's clear why the minus sign above was dropped). This running wave set of
datesis smply adifferent bass set from the standing wave set

2. Note that one generdly sees periodic boundary conditions written as Y , =Y 4+ N
and not Y , =Y 4+ N+1 8 Written above. Why? In our problem of N masses with
fixed boundary conditions, we redly introduced a fictitious 0" and (N+1)™" mass
and made them dationary. So we redly had N +1 unit cels in our problem. With
the periodic boundary conditions, we let the 6" and N™ atom (which are redly the
same atom) participate in the motion, so again we redly had N +1 unit cells.

16




14 Diatomic chain

Lab #2 is the study of an N-membered chain containing
alternating masses (“diatomic chain”)

1.4.1 Equations of motion

Following the procedure we used to analyze the monatomic chain, we will set up Newton's
equations of motion usng Hooke's Law for the forces. Again we congrain the motion to one-
dimension aong the direction of the chain (longitudina oscillaions).

Each “cdl” or repeeting unit contains two masses, M and m, and two identica springswith
spring condant . In the diagram below, the dark masses (M) are the larger, the light ones (m) are
the smaler. The distance from cell to cdl (“lattice congtant”) is a, therefore equilibrium spacing
between the masses (“interatomic distance’) isa/2. The equilibrium postion of massnis

0

Xn :n—za S0 the actud pogtion of the mass dong the chainiis X, :n—2a+y n-

n-1

¢ i
- - [ ]
M | !

The force on the heavy massn is i, = -k 6/ n-Yn- 1)' k@ n-Y n+1)- Newton's law gives
F, =My, sowehave
MY =K ns1- Y ntYn-1)
For the neighboring light mass n-1, the equation of motion is
Faoi =M oy =K(Y 2= 2Y oa vy 0)-
For the monatomic chain, we were able to obtain the disperson relation from the equation of

moation for asingle massin the chain. For the diatomic chain, we have two digtinct equations
becauseM 1 m.

17



1.4.2 Normal modes and dispersion relation

We assume, as usud, that there exist norma modes of motion in which al masses oscillate with
the same frequency. However, the small and large masses can ostillate with different
amplitudes. Thus we need to write

y 1, = Ael (k222w g M masses,
Yy =aAe @2 W) for i masses

where a determines the amplitude and phase of m oscillations relative to M ostillations.  Once
again note thet the frequency w has no subscript n rdating it to a particular mass — al masses
move with same frequency in given mode. The wave vector, k, is determined by the wavelength

of the pattern of displacement dong the chain, k = % .

Now, substitute the assumed displacements for anorma mode into the two equations of motion
and cancel the time-dependent factor e ™! that is common to al terms.

- Mwldnkal2 = _ k(einka/z _ aei(n-1)ka/2)_ k(einkalz . aei(n+l)ka/2)
_ amwldln-dker2 — _k(aei(n- Wal2 ei(n-z)ka/z)_ k(aei(n-l)kalz ] einkalz)

We can dso cancd the common factors €™#/2 and &'0-1%/2 i the firgt and second equations,
respectively to get

- MW2 :k(a.elkalz +ae—ika/2 - 2)

- amw? =k (é'ka/2 +o ka2 Za)
which can be further smplified to get two equationsin the two unknowns a and w?:

- Mw? = 2ak cogka/ 2)- &
-amw = 2k coska/ 2)- 2ak

Now diminae a by solving each equetion for a,
2k - MW

4~ X coskal2)
o= 2 cogka/ 2)
2k - mw

and equating them to get the DISPERSION RELATION w(K):

18



& cogka/2)  2k- Mw
& -mw 2k cogka/?2)

b 4k?*cos (ka/ 2) = (k- m\/\/ZXZk- Mw’)

1/2
1 4 . u
W =k & 4 _keae ——sm2 ka/ 2)
&M  m@ %M mi’j Mm ( )H

We can anticipate that we will want to label frequencies and wave vectors with an index g to

identify the norma mode they are associated with. Thus, the find form of the disperson reation
is

J/Z

szkael\tl °+k229|\1/| m‘Z’ - —Snz(kqa/Z)J

Remember, frequencies wy and wave vectors kq as associated with the o" mode and not any
particular mass. The masses are identified by their “address” along the chain, n.

A new feature has emerged in the disperson relation of the diatomic chan. Because of the +
sggns, there are two branches to the disperson curve. Each vaue of the index q has two
frequencies.  We will need to digtinguish these frequencies. We @uld do this by introducing an

additional index, say, by writing Wa* andw,. However, it is conventiond to label the two
branches of the digpersion curve with the following names:

the lower frequency branch is caled the ACOUST I C branch;
the higher frequency branch is caled the OPTIC branch.

There are sound physical reasons for these names, which we shal discuss shortly.

Note the repetition of frequency information after k =P e beyond the boundary of the
a
Brillouin zone. Wavdengths less than 2a are physically meaningless, as we found in Lab #2.

The two branches of the disperson curve ae shown in the following figure  They were
cdculated for the parameters m=1, M =2,k =0.5, a=p.
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Figure X. Acoudtic branch (lower curve) and optic branch (upper curve) of the dispersion

relation for adiatomic chain with parametersm=1, M =2, k= 0.5, a=p.

Important features of the dispersion relation for a diatomic chain:

1. There is a maximum frequency for the acoudtic branch, and both maximum
and minimum frequencies for the optic branch.

2. Both branches are periodic in k and al possble frequencies can be obtained
with wave vectorsintherange O £ k £ p/a(Brillouin zone).

3. Because the “lattice congtant” a equas twice the spacing between masses, the
Brillouin zone for the diatomic chain is half the sze of te Brillouin zone for a
monatomic chain with the same pacing between masses.

4. The acoudic branch is quditativdy smilar to the disperson rdation of €
monatomic chain and, in paticular, is linear for small values of k (or k-vaues
thet are integer multiples of 2p).

5. At the Brillouin zone boundary, there is a gap (a range of forbidden frequencies)
between the acoustic and optic branches. The magnitude of the gap depends on
the ratio m/M and the aap closeswhen m = M.

Now that we know the frequencies, we can go back and calculate two vauesfor a at agiven k-
vaue (one for the acoustic modes and one for the optical modes). The results are:

2k cosgtgg 2k cos@d—ag
a = e2g q = e2g
2 2k-w2 ° 2k-w?

These expressons for dpha are shown below plotted versus k for the same parameters used in
Fg. X.
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Figure XX.  Amplituderatio a versusk for the acoustic modes (centra curve) and optic modes
(upper and lower curves) for adiatomic chain with parametersm=1, M =2, k=0.5,a=p.

Important features of the amplituderatioa for a diatomic chain:

1. For the acoustic branch near & smdl k values a, ® 1. This means that masses m
and M are moving in phase with equal amplitudes. Since the wavdengths are
long in this limit (I >> a), this corresponds to ordinary longitudina sound waves,
hence the name “acoustic” for this branch.

2. For the optic branch near k =0, ap * 1 and is negative. This means that masses m
and M are moving out of phase with unequal amplitudes. For the parameters
used for Figs. X and XX, ao, = - 2 90 that the smal masses m are oscillating out of
phase and with twice the amplitude as the large masses M. In red solids where the
different masses may dso cary differing ionic dectric charges, such out-of-phase
motions couple strongly to eectromagnetic waves (discussed in section x.x), hence
the name “optic” for this branch.

3. For the acoudtic branch at the Brillouin zone boundary, a, = 0 s0 that in this mode,
the light masses m are not moving at all and only the heavy masses M are
oillating.

4. For the optic branch and the Brillouin zone boundary, a, ® ¥ =0 that in this mode,
the heavy masses M are not moving and only the light masses m are oscillating.
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We asserted previoudy that the “gap” between the optic and acoustic frequencies a the Brillouin
zone boundary depends on the ratio /M and that the gap vanishes when m = M. Thisis
illugrated in Fig. Y where the disperson relation is plotted for the case m=1, M = 1.1. It can be
seen that the gap is now very smal compared with that in Fig. X. The two branches amog join
together to form sets of repeating monatomic dispersion relations.
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FHaureY. Acoustic branch (lower curve) and optic branch (upper curve) of the dispersion
relation for adiatomic chain with parametersm=1, M= 1.1, k = 0.5, a=p.

The amplitude ratios a, and a, ae shown below in Fg. YY for m=1and M =11, The man

effect of nearly equd masses is tha a, and a, ae dmost congdant across the Brillouin zone
except very close to the zone boundary.
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FigureYY.  Amplituderatio a versusk for the acoustic modes (centra curve) and optic modes
(upper and lower curves) for adiatomic chain with parametersm=1, M= 1.1, k=05, a=p.

Group activity: For the diatomic chain, find the wave vectors, vibration

frequencies, and values of the constant a at the following special points:
Group 1: Long wavelength optical vibration
Group 2: Brillouin zone optical vibration

Group 3: Brillouin zone acoustic vibration

Interpret your results in a way that illustrates the physical behavior of the
system. Articulate what distinguishes an acoustic from an optical
vibration.

If you finish early, move on to another task, swapping roles of taskmaster,
cynic, & recorder. Interpret your results in a way that illustrates the
physical behavior of the system. Articulate what distinguishes an

acoustic from an optical vibration.
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1.5 Evanescent waves: forbidden frequencies

From our study of various systems of coupled oscillators we have learned that the norma mode
frequencies are confined to certain ranges, depending on the specific type of sysem. For
example, there is a maximum frequency for the dlowed modes of linear chains of coupled
mases (monatomic or digtomic). The same is true for a “beaded dring,” a set of masses
connected by a continuous string instead of Hooke's Law springs.  In some cases, there is a
minimum frequency. Examples are the coupled pendua (hwk 1) or optic branch of diatomic
chain (Lab 2).

The exigence of these maximum and minimum dlowed frequencies means tha there are certan
frequency ranges for which no modes exist in coupled sysems. Of course, even within the
ranges of alowed frequencies, boundary conditions require that only certain discrete frequencies
(eigenfrequencies) are dlowed. But these discrete frequencies can be made ahbitrarily close
together in a system with alarge number of masses.

The laws of mechanics and the properties of a paticular sysem determine the frequencies of
alowed vibrationa modes for that sysem. If the system is excited, say by displacing the masses
from equilibrium and then leaving it undisurbed, the sysem will move in some superpostion of
the dlowed norma modes that depends on the initid conditions. However, there is nothing to
prevent us from driving a system a any frequency of our choice. In particular, we might choose
to drive the system a a frequency that is not adlowed. We ould, for example, oscillate one end
of a lineer chain of masses and try to excite waves adong the chain a a forbidden frequency.
What happens?

Let’s consder the example of amonatomic chain. We know that the disperson rdlation is

wi(k) = 2\/79n— n%

We dso know that depending on the number of masses and the type of boundary conditions,
there are norma modes with discrete frequencies in the range 0 <w £ w,,,, and discrete wave

vectors in the Brillouin zone O<k £p/a. But now suppose that we pick a driving frequency

W > W, - Then sing%agzww >1 and k must necessarily be complex dnce the sn (x)

max

cannot exceed 1 for red x.

To see how this goes, firg recdl that the sne and cosine of purdy imaginary arguments leads to
the hyperbolic functions, snh and cosh, respectively:

gd- gl gd_gtd gHl_gd

siniqg= = =i =ignh
a 2i 2i 2 a
eiiq_l_e—iiq e—q+e+q
cosiq = > = > =coshq
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Now, letting k = Re (k) +i Im(k),

w(k) _gn (Re(k) +ilm(K))a

Wmax 2

w(k) _ g, Re(kR  JImKa - Refk)a_ ilm(Ka
Winax 2 2 2 2
M =49n Re(k)a Coshlm(k)a+ | COSRe(k)aSinh Im(k)a
W max 2 2 2 2

Thefrequency w must bered for any vaueof k, so

cos&g@g: 0P Re(k)zg,%g...

It is sufficient to take Rek) = &/a This means | = 2a and the masses always vibrate in
antiphase. Further,
w(k) :sin%cosh—(li)—lm2 a:cosh—(li)—lmz a

W e
MEB = cosh’ 1M
2 mex

Now look &t digplacements again:
y . = Ad (kna- d)eiwt
n

i§m+i2ncosh'laww g—dg_
y . = Ae max @ nelwt
—?ncosh‘lg%%
Yy, =Ae max q},ei(pn—d)eivw = Ae” bnei(pn-d)eiwt
where p o 2cosh-tee W 2 Thered partisy ,, = AeP" cos(pn— d+vvt).

Wmax b

This describes a wave that is exponentidly damped dong the chain with a damping length (1/b)
that depends on how far above winax We attempt to drive the chain.
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Figure Z. Ingantaneous amplitudes of oscillations for a monatomic chain driven a a
frequency w>w,,, . The more srongly damped wave results from a driving frequency thet is

further into the forbidden frequency range. The horizontd axis represents the distance dong
from the chain from the point & which it is driven.

Discussion questions:

Congder a st of coupled masses in which the middle masses are replaced by heavier ones.
What will happen? (Demongtrate with CUPS session?)

Suppose a wave propagating with an dlowed frequency dong a chain encounters a region in
which the frequency of the wave is forbidden. What will hgppen? What happens to the

energy carried by the propagating wave?
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