
Fourier Analysis 
 
 
Fourier analysis is the decomposition of a general oscillation into harmonic components.  

In this case, we treat the oscillation as a function of time, so the Fourier decomposition is done in 
terms of frequencies.  A Fourier series is a sum of sinusoidal functions, each of which is a harmonic 
of the fundamental frequency.  A Fourier transform is an integral over a continuous distribution of 
sinusoidal functions. 

 
 

Fourier Series 
 

A Fourier series is appropriate when the system has boundary conditions that limit the 
allowed frequencies to a discrete set.  For a system where the temporal periodicity is , the Fourier 
decomposition of a general periodic function is the series 

  , (1) 

where the allowed frequencies are harmonics of the fundamental frequency  

  . (2) 

The expansion coefficients  in Eqn. (1) are complex.  The real version of the Fourier expansion 
is 

  . (3) 

The expansion coefficients  are obtained by calculating the overlap integrals (i.e., 
projections or inner products) of the desired function with the harmonic basis functions 

 . (4) 
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Fourier Transform 
 
A Fourier transform is appropriate when the system has no boundary conditions that limit 

the allowed wave vectors.  In this case, the Fourier decomposition is an integral over a continuum 
of frequencies: 

 , (5) 

where the expansion function  is complex.  To obtain the expansion function  for a 
given temporal function  requires the inverse Fourier transform 

 , (6) 

which is a projection of the temporal function  onto the harmonic basis functions .  
The basis functions are orthogonal and normalized in the Dirac sense, which means their 
projections onto each other are Dirac delta functions 

 , (7) 

whether viewed in the time representation or the frequency representation. 
Some typical Fourier transform pairs are shown in Fig. 1 and are listed below (without 

proper scale factors). 

 . (8) 

In each case,  and  are Fourier transforms of each other following Eqns. (5) and (6).  In 
Fig. 1, only the real part of the function  is plotted and each wave has a central frequency  . 
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Figure 1.  Fourier transform pairs: (a) Infinite wave  delta function, (b) Gaussian  Gaussian, (c) exponential 

 Lorentzian, (d) square pulse  sinc function. 

 
The temporal extent  of a function  and the width  of the Fourier transform 

 in frequency space are inversely related through the Fourier uncertainty relation 

 . (9) 

This relation tells us that if want to make a signal that is confined to a short time, we need to use 
a wide range of frequencies.  In quantum mechanics, this concept is the Heisenberg uncertainty 
relation.Parseval's theorem says that the power is the same whether calculated in time or frequency 
space: 

  . (10) 
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Examples 
A square wave can be assembled from a Fourier series of odd harmonics with appropriate 

coefficients, as shown below: 
 

 
 
 
A single square pulse can be assembled from an infinite assembly of sinusoidal waves: 
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Fast Fourier Transform (FFT) 
Fourier analysis on a computer is usually done with Fast Fourier Transform.  It is called 

Fast because it uses a novel algorithm to efficiently calculate the Fourier coefficients.  It uses a 
finite collection of time series data and produces a finite set of Fourier coefficients, so technically 
it is a Fourier series.  It is sometimes called a Digital Fourier Transform. 

The input data in the form of a finite time series comprises data taken at equal time intervals 
.  If the time series includes N points, then the total time is .  The time interval  is 

also known as the sampling time, and the inverse of that time is the sampling frequency 
.   

The FFT uses the N time series points to calculate N points in the frequency domain.  The 
FFT is complex, so the output has real and imaginary components, or amplitude and phase.  We 
will ignore the phase for this class and focus on the amplitude.  So our FFT will have N/2 points 
in a spectrum from zero frequency up to a maximum frequency, which is called the Nyquist 
frequency.  The Nyquist frequency is related to the sampling time by the equation 

   (11) 

and hence to the sampling frequency by 

  . (12) 

The spacing between points in the frequency spectrum is ,  which is also  . 
The Nyquist frequency is important because it is the largest frequency that you can detect 

with the FFT method.  In other words, the sampling frequency must be at least twice as large as 
the highest frequency that you expect in your experiment.  Unfortunately, if there are frequencies 
in your experiment larger than the Nyquist frequency, they will still appear in your data, but they 
will have apparent frequencies different than their actual frequencies.  This problem is known as 
aliasing and is similar to the stroboscopic effect that you see at dance parties where the strobe light 
changes your perception of the dancer's motion. 
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