Fig. A1. Loop currents
through terminals AB.

Appendix A

Thevenin’s Theorem

Any network can be described by loop currents passing from volt-
age sources to the terminals AB, hence through a load resistor Ry,.
An example is shown in figure A.1. In order to establish Thevenin’s
theorem, it is necessary to show that Vap = Veq — Reqlag, where
Veq and Rgq do not depend on the load resistance K.

Around each current loop, there is a linear equation:

Va=Vi— Ry, —Rials — - — Riplp
Vap=Va— Ro1 ) = Ryaly — -+ — RanlIn
Vap=Van— Ra1li — Rpoly — -+ — Runln.

Because the voltage drops appearing on the right-hand side in the
form R;;I; stop short of the terminals AB, the load resistance Rr,
does not appear explicitly anywhere in the equations. They can be
solved for currents (by simple elimination and substitution), with
the results

L =Y Vi+YaVa+ - -+ Y, Vo —11Vas
I =Y Vi+YeaVot 4+ Yoo Vo — 72 Van

In = nlvl +Yn2v2 A YnnVn _7nVA.B

where again none of the coefficients depend on Ry, (since R;; did
not). Then Iag = };I; can be written B1V) + BoVo + -+ +
B,V, — CVag. This is of the required form if C = 1/Rpq and
Veq = (BiVi+ BaVa+ -+ + BoV,)/C.

In Chapter 6, it is shown that there is a linear relation between
V and [ for capacitors and inductors when the notation of com-
plex numbers is used. The linear relation between V' and [ is the
foundation of Thevenin’s theorem. Hence the proof carries over to
include capacitors and inductors in AC circuits. Fourier’s theorem
expresses any waveform in terms of Ac components, and Thevenin’s
theorem is therefore generally valid for any network where the re-
lation between V' and I is linear. This extends it to small signals
in non-linear circuits, following the methods of section 1.11.
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‘ Another worked ezample
Figure 1.19(a) shows a rather complicated circuit. As an illustra-
tion of all the methods which have been developed in this chapter,
we shall find all the currents and the voltages Vs and Vg at nodes
l by three different methods.

kQ g 0.6mA  1k0 1kQ
—MW—— W B
R
5 Is RsR. RR, A0-SmA
<R+ R, R+ R,
‘D
<= =3KkQ =1kQ ==
l, 2kQ I3 4KkQ I.2mA 0.25mA
V. &5 MA N AAA V. — AlN_AAA MA &
AY7 ;2" f;zvv R B = /\, "2'I<O "l" Y N
|| N 2. 3 '4 i8mA k@2 /tO7SmA
= @, RS k0= =
4 < <
2kQ R, 12kQ 12kQ
. ll J
| [—-I i s 8 =
; Y = jov - ev. = = 10V
|
‘ (a) ' (b) 1,=0.15SmA (c) L,=+0.25mA
| I,=-0.45mA l,=-0.25mA

Fig. 1.19 Worked example.



14 Voltage, Current and Resistance

Using superposition, the currents may be obtained from those
due to the individual batteries. In (b), the 10 V battery is shorted
out and Rz and R4 appear in parallel. The top three resistors
of (b) provide 2 kQ in parallel with 4 kQ between A and earth,
ie. 2 kQ, so the contribution to I; = 1.8 mA. It is easy to see
how this divides at A; then Is splits between 0.15 mA through R4
and a contribution of —0.45 mA to I3. In (¢), the 6 V battery

" is shorted, so Ry and R, appear in parallel. The arithmetic of

the resulting currents is shown in the figure. The signs of the
contributions to I; and I are easy to follow from (a) and the
sense in which the 10 V battery drives currents. Adding currents
from (b) and (c), I1 = 1.55 mA, I = 1.45 mA, I3 = —0.7 mA,
Iy = —0.6 mA and Is = 0.1 mA. From these currents, it is simple
tofind Va=6-3.1=29Vand Vg =10+ 4Ry =28 V.

Suppose instead the problem is to be solved using mesh cur-
rents. The ones to choose would be I}, 4 and I5, as shown in (a).
Applying Kirchhoft’s current law, Iy = Is + Is and [y = Is + I5.
The values given in the previous paragraph satisfy these relations.
Then applying Kirchhoff’s voltage law to each loop in turn:

6 =21, +2(I) — Is) = 4I; — 215
10 = — 121, + 4(I5 — L) = 415 — 161,
0=1Is +4(Is — L) + 2(Is — ) = TIs — 414 — 21

with currents in mA. Solving these three simultaneous equations
is tedious. It is however straightforward to substitute the values
derived above and demonstrate that the equations are correctly
satisfled. Using superposition is really a graphical way of eliminat-
ing variables from the simultaneous equations.

The third alternative is to use node voltages Vi and Vg. Then
current conservation at these nodes gives

6—~Va Va—Vs " Va

21 2
lO—-VB_VB Vs — Va

-4 1

The solution of these two simultaneous equations is easy; a check is
that the equations are satisfied by the values of V4 and Vg obtained
above.

1.10" Non-linear Elements in a Circuit

Superposition is a valuable shortcut, but (as demonstrated below)
it only works exactly for circuits containing linear components like
resistors, where V' o« I. The next chapter develops other powerful
shortcuts which again depend on linearity. However, many elec-
tronic devices such as diodes and transistors do not obey Ohm’s
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Norton’s Theorem 27

(ii) With the batteries replaced by short circuits, Rpq is the
resistance across AB, namely 5 kQ in parallel with 10 k2. So
Rgq = 10/3 kQ.

(ii1) As a check, consider the situation with AB open circuit. In
this case, there is a net voltage of 10 V in (a), driving current
in the direction of the arrow through the 5 and 10 k2 resistors;
I = 10/15 mA and Vag = 10 + 57 = 10 + 10/3 = 40/3 V. This
agrees with IgqReq from (i) and (ii).

A circuit can often be simplified quickly and neatly by swopping
backwards and forwards between Thevenin and Norton equivalent
forms. This is illustrated in figures 2.11(b)-(d). It is a trick worth
practising, since it often saves a great deal of algebra. The batteries
and resistors of (a) are replaced by equivalent Norton circuits in
(b); these are combined in parallel in (c) and then (d) converts
back to the Thevenin equivalent form. An important warning is
that you must not include the load resistor between terminals A
and B in these manipulations: Thevenin’s and Norton’s theorems
apply to the circuits feeding terminals AB.

Another worked ezample
Figure 2.12 reproduces a fairly complicated example from Chap-
ter 1, figure 1.19(a). If all currents and voltages in the circuit are
required, it is best to use one of the methods from Chapter 1. Sup-
pose, however, only current I3 is to be found. It can be obtained
straightforwardly by application of Thevenin’s and Norton’s theo-
rems. The steps are shown in figure 2.13. In (b), V2 and R4 are
replaced by their Norton equivalent. Then R3 and R4 are combined
in parallel and (c) returns to the Thevenin equivalent form.

With AB open circuit,

VaR R3Ry \ 7!
Voo =i (1~ g ) o (w22
=6— (6—25)2/(2+1+3)
29
= 6 V.

With the batteries shorted out, Rgq is given by the parallel com-
bination of R; with

Rs + R3Rs/(Rs+ Rs)

Le. 2 kQ in parallel with 4 kQ, so Rgq =T4/3) kQ.
As a check, the current through AB when shorted is Igq:

IEQ

Vi _VaRs ( R3Ry )‘
=5+ R
R, " Ri+ Ry "Rt s

=3+425/4=29/8 mA.

MW—>
Rs
l, 2kQ t 4KQ
V. LS AAA N _AAA vV
A7 YYY 7 VY 8
| AN Rs
- \ -
HOMNOLE
2kQ | R, 12kQ

= 1
Vi=6 V V=10 V

Fig. 2.12. A worked example.

R
A B 2
(b) L
R= W
Ra4
2
v v,
Il Re
M
Rs R
R
) Rk E 0N
(c A B R+R,
ng VQR3
v Rs*R4

N

Fig. 2.13. Worked example.
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Fig. 2.14. For constant V.,

Rea << R

@

Fig. 2.15. For constant lg,,

Rea»> R .

(a)

Fig. 2.16. Wrong choices for
equivalent circuits.

28 Thevenin and Norton
This agrees with Vgq/Rgq as it should. The arithmetic and alge-
bra are sufficiently tortuous that this is a valuable crosscheck.
Finally, the current I of figure 2.12 is
Iy = Veq/(Req + Ra) = £ (2 +2) 7 = 1.45mA
in agreement with the value obtained in the previous chapter.
Further examples are given in the exercises at the end of the

chapter. If you can do question 6, you have mastered the vital
points of Chapters 1 and 2 up to here.

2.5 General Remarks on Thevenin’s and Norton’s
Theorems

(1) Suppose a constant voltage is required across a load Ry,
with as little variation as possible when Ry, is changed. From
figure 2.14, Rgq needs to be small compared with Ry, so that
most of Vpq appears across Ry,. Thus a constant voltage source
should have a low output resistance or output impedance, as it
is often called.

(2) Conversely, suppose a constant output current is required,
independent of load; this is the case, for example, in supplying a
magnet or a motor. From figure 2.15, this demands Rgq > Ri,
or high output resistance.

(3) When a circuit is measured with an oscilloscope or voltmeter,
it is desirable to disturb the circuit as little as possible, i.e. draw
very little current. This requires the detector to have a high input
resistance or input impedance. Oscilloscopes and multimeters
typically have input resistances of 105-107 Q. On the other hand,
if an ammeter is inserted into a circuit in order to measure current,
we want to disturb the current as little as possible. Therefore an
amameter should have a low resistance.

(4) Although Thevenin’s and Norton’s circuits are equivalent to
any network in the sense of giving the same output voltage and cur-
rent, they are not equivalent as regards power consumption within
the equivalent circuit. You may easily verify that the power dissi-
pated in the Norton equivalent circuit of figure 2.10(b) is different
from that dissipated in the Thevenin equivalent circuit (a). This
is because power is non-linear in V or I.

(5) Common student howlers are to draw equivalent circuits in
the forms shown in figure 2.16. It is worth a moment’s thought to
see as to why these must be wrong. In the former case, Vap = Vig
independent of load, which gives an absurd result if the terminals
are shorted. In the second circuit, Jag = [gq independent of load,
and this is absurd if the terminals are open.

(6) If you encounter a circuit like that in figure 2.16(a) where
a resistor is applied directly across a battery, you can ignore the
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