
Chapter 1

Understanding the Nature of
Light

The nature of light has fascinated philosophers, as well as ordinary people,
for thousands of years. The light seemed something ordinary and at the same
time something very mysterious, magical. According to today’s criteria, a
truly scientific approach to the nature of light was initiated about 350 years
ago by two great scholars - the Englishman Isaac Newton and the Dutchman
Christian Huygens. By then, three firmly established facts about light were
already known:

• that light propagates along straight lines – the evidence of that are
shadows;

• that if light is reflected from flat mirror or any other flat surface (e.g.,
water surface), the angle between the surface and the incident light
rays, and the angle between the surface and the reflected light rays –
are exactly equal: an evidence for that, for instance, is that the mirror
image of an object is of t he same size as the object;

• that light, when passing through the interface between two transparent
media, is refracted;

• that the edges of a shadow are not perfectly “sharp” – as if some part
of light passing near the edges of an shadow-forming object is slightly
“deflected”. It is best seen when light passes through a narrow slit –
the image of the slit on a screen is wider than the slit.
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Both Newton and Huygens presented explanations for the above phenom-
ena – but completely different explanations!

One of the greatest achievements of Newton was the formulation of the
laws of mechanics – which tell us how material objects, either tiny ones, or
huge ones, behave when forces are acting on them – and, in particular, when
there is no such force. Furthermore, he discovered the law of universal gravity
– saying that between any two material objects there is always an attractive
force, proportional to the objects’ masses, and inversely proportional to the
square of the distance between them.

Newton realized that if light were a stream if tiny material particles, than
the laws of mechanics he had discovered would be able to explain all the four
phenomena listed above! Let us follow his reasoning, for each of them.

The Newton’s First Law of Dynamics states that if there is no force acting
on a material object, it either is at rest, or moves with a constant velocity
along a straight line. So, if light is a stream of tiny particles, then, obviously,
such particles move along straight lines. Well, but Earth attracts all material
objects – we know that the path of any projectile is curved downward, so the
paths of “light particles” we observe also should deviate from straight lines!
But Newton did find an answer to that argument. Namely, it is known that
the curvature of the projectile’s path depend on its speed – the faster the
projectile flies, the less its path curves downwards (every sniper or artillery
man will testify that this is true!). So, Newton reasoned, if the speed of “light
particles” is very high, than one will not be able to observe any deviation
from a straigh-line motion. Newton had no clear idea of the value of the
speed of light – however, at the times he lived it was already known that it
was a very high speed.

As argued by Newton, the law of reflection – namely, that the angle of
reflection is equal to the angle of incidence – can also be explained by the
laws of mechanics. Consider a rubber ball dropped vertically on the floor: it
“bounces back”, but it loses some of its speed. Balls made of special plastic
lose less speed, and a steel ball bouncing back from a wall of solid steel may
lose as little as 1% of its speed. If the ball loses no speed at all, we call it
a “perfectly elastic collision”. So, according to Newton’s explanation, the
reflection of “light particles” from a mirror – if the light hits the mirror at a
right angle – is a “perfectly elastic” process, the “light particles” are “backre-
flected” with the speed exactly equal to their speed before the collision. OK,
but what if the path of “light particles” is not along the “normal” (normal in
geometry is a line perpendicular to a plane), but makes an angle θ with the
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“normal”? Well, then, the Newton’s reasoning is the following. Suppose that
the velocity of incoming “light particles” is V . Velocity in physics is a vector
– we indicate that by adding a small arrow symbol at the top of V , so it
becomes ~V . Now, physics allows us to “decompose” any vector into two per-
pendicular components. Let’s make one of those components parallel to the
“normal”: we call it Vx, and its value is Vx = V cos θ. The other component,
call it Vy, is perpendicular to the normal, and its value is Vy = V sin θ.

If a vector of length V is decomposed into two perpendicular components,
Vx and Vy, then, according to the Pythagorean Theorem, it must be:

V 2
x + V 2

y = V 2

Is it so with the two components we have chosen? Let’s check:

V 2
x + V 2

y = V 2 cos2 θ + V 2 sin2 θ = V 2(cos2 θ + sin2 θ) = V 2,

because, according to the well-known trigonometric identity:

cos2 θ + sin2 θ = 1,

for any θ angle. So, the way we have decomposed the ~V vector is correct.
Now, what happens if the “light particle” collides with the mirror? Well,

the normal component of the velocity Vx will behave as in the case of a
perpendicular collision, i.e., the light particle will be “bounced back” with
the same speed, so that Vx changes to −Vx.

And what with Vy? Would it change? Let’s think: what is needed to
change the velocity of an object? The answer is given by the Newton’s
Second Law of Dynamics :

F = m · a, or a =
F

m
,

where F is the force acting on an object, m is the object’s mass, and a is
the acceleration resulting from the application of force. And acceleration, if
we use a simpler language, is a change of velocity over time. In conclusion:
if there is no force, there is no change in the velocity. And there is no force
of any kind that act parallel to the mirror surface! So, the parallel velocity
component remains unchanged in the process of reflection. In other words,
before the reflection the velocity components are Vx and Vy, and after the
reflection they are V ′x = −Vx, and V ′y = Vy, as shown in Fig.1.1.
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Figure 1.1: The reflection of light from a mirror, as explained in the Newton’s theory
of “light particles”. The normal velocity component Vx changes its sign as the effect of a
“perfectly elastic collision” with the mirror surface, and the parallel component Vy remains
unchanged.

From the figure it can be readily seen that the tangent of the incident
angle θ is tan θ = Vy/Vx, and the tangent of the “angle of reflection” θ′ is:

tan θ′ =
V ′y
V ′x

=
Vy
−Vx

= − tan θ

From the general properties of the tangent function, we know that for any
angle ϕ:

− tanϕ = tan(−ϕ)

So, as follows from the above, the angles θ and θ′ are of equal magnitude –
and the θ′ = θ result we get from the geometric considerations simply means
that the the paths along which a “light particle” moves, respectively, before
and after the act of reflection, are symmetric with respect to the normal to
the reflecting plane (i.e., the x axis) – in perfect agreement with the behavior
of “real light” in a “real process of reflection” from a mirror plane.

Refraction – let’s recall how it works in most simple cases, e.g., when light
is incident on the surface of water. Some light is always reflected from the
surface, but we have already discussed reflection – now we are interested in
the light that passes trough the surface and propagates through the body of
water – as shown in Fig. 1.2.
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Figure 1.2: Refraction: the path of a beam of light, after entering water, is “bent
downwards”. The angle between the normal to the water surface and the incident beam
direction is θi, and the angle between the normal and the refracted beam direction is θr.

The explanation of refraction in the Newton’s theory is also based on
relatively simple velocity considerations. The underlying assumption is that
“light particles” have energy that consists of two components: the kinetic
energy K, and potential energy U . The total particle energy is conserved,
meaning that K + U = const. However, the potential energy of the light
particle depends on the medium the light passes through: the energy U is
different in air, different in water, different in glass, etc.. Therefore, when
light passes from one medium to another, the kinetic energy K also changes
in order to maintain the total energy constant. And since the kinetic energy
of the “light particle” depends on its velocity V as K = mV 2/2, the velocity
also changes with each such passage.

Newton did not explain what’s the origin of the potential energy of “light
particles” – his assumption was what we call a phenomenological one: you
make the assumption, not necessarily specifying why do you think that “it
is so”. But if your assumption leads to a result consistent with the observed
phenomenon, you may claim: I don’t know exactly why things are such as I
have assumed – but since the assumption leads to a result consistent with the
physical reality, then they must be correct!

Well, sometimes they indeed are – but not always. So, was the New-
ton’s assumption correct? Well, in order to answer the question, we have to
examine the theory in closer detail.

In fact, a good way of doing that is to use a “mechanical model” – we
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often do that, because mechanical models are usually “intuitively clear”. So,
in the present case, consider a “deck” of the type that is popular in Corvallis.
Let the deck consist of two parts, one of them at a slightly higher level (e.g.,
with /DeltaH of six inches, or so) than the other. But let the “inteface”
between the two parts has not the form of a sharp step, but of a “step with
rounded edges”, as depicted in Fig. 1.3. Why rounded edges? Well, because
we will be rolling balls on the “double deck”, and over the step – and we
want the balls never to lose contact with the deck’s surface. In addition, let’s
assume, that friction effects in the ball’s rolling motion are negligibly small.

Figure 1.3: The profile of a “double deck” with a “rounded step” betwen the two flat
parts. Upper plot: a ball rolls on the upper deck with a speed of V . Lower plot: after
rolling down the rounded step, the ball’s potential energy decreases by ∆U = mg∆H. But
the total energy is conserved, so the balls kinetic energy K increases by the same amount
– and, consequently, the ball’s speed increases.

In Fig. 1.4 there is a view from above at a ball rolling on the deck. But
now the ball’s motion direction is not perpendicular to the step, but makes
an angle θi with the perpendicular line. So, the ball now has two velocity
components: Vx pointing towards the step, and Vy parallel to the step. Now,
when the ball rolls down the step, only Vx increases and at the lower deck it
takes the value of V ′x > Vx – while Vy remains all the time the same, because
there is no force pushing it in a direction parallel to the step. Consequently,
the angle θr 0n the lower deck is smaller than θi on the upper deck – in
analogy to the situation shown in Fig. 1.2, when a light beam is refracted

6



by water.

Figure 1.4: A ball rolling over the “double deck”, as seen from above. The lighter gray
part is the higher one, the darker gray is the lower part, and the “rounded step” is where
the gray gradually changes from lighter to darker. When the ball starts rolling down, only
the Vx component increases. There is no force acting parallel to the “step”, so that the Vy
velocity component remains unchanged. It causes that at at the lower deck’s part the ball
rolls along a line that makes an angle with the direction perpendicular to the “step”(i.e.,
the x direction) which is smaller the angle between the rolling direction and the x axis at
the upper deck.

So, the mechanical model seems to work pretty well. One thing may not
look O.K. at the first glance – the “step” in the model cannot be too narrow,
and in the case of light entering water, the “step” width, i.e., the width of
the interface region between air and water is probably comparable to the size
of a single water molecule (about 1 nanometer). Well, but if we assume that
the size of“light particles” is even smaller than that of a single molecule, the
problem disappears.

As you can see, I (Dr. Tom) am trying to defend Newton’s theory of
light!
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But I still have not used all “defensive weapon” that the theory offers.
Namely, the agreement of the Newton’s theory with refraction of real light
in water (or another transparent medium) is not only qualitative – the me-
chanical model also obeys an important law of optics, known as the Snell’s
Law (in Europe, it’s often called the Snellius Law – “Snellius” is the Latin
version of the same name). The Snall’s Law states that when light passes
from one medium to another, the ratio of the sine of the angle of incidence
(θi – see Fig. 1.2) to the sine of the angle of refraction is always the same –
no matter of what the angle of incidence is:

sin θi
sin θr

= constant = n (1.1)

Here, n is a coefficient called the refractive index, a real V.I.P. in optics
(V.I.P. = very important parameter). Its value depends on the two media
involved (e.g. for light impinging water from air, n = 1.33; for light entering
a diamond, n = 2.417, and for light entering diamond from water n = 1.812.
But right now we are less interested with the values n may take, and more
in the fact that n remains constant, no matter what the value of θi is.

You may believe me that the Newton’s model does obey the Snell’s Law
– but I don’t like to be one of those persons who repeatedly exclaim: Believe
me! Believe me! Bleieve me that it is so!. Therefore, below I do present a
proof – but you don’t need to read it line by line, it’s enough if... you believe
me that it is so :o)). It’s not a material that you should know to pass an
exam in the Ph332 Course!

***** The proof – you may skip it! *****
For our consideration, we will use Fig. 1.5, which is a slightly modified

Fig. 1.4: several symbols have been added, and the image of the “step” is
reduced to a single line. The total velocity vector of the ball on the “upper
deck” is:

Vtot =
√
V 2
x + V 2

y (1.2)

If m is the mass of the “light particle”, then its kinetic energy K is:

K =
mV 2

tot

2
=
m(V 2

x + V 2
y )

2
(1.3)

The kinetic energy K ′ of the ball after it runs down the “step” is:

K ′ =
mV ′ 2tot

2
=
m(V ′ 2x + V 2

y )

2
(1.4)
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Note that Vy at the “lower deck” is the same as that on the “upper deck”–
as we have discussed before.

Figure 1.5:

The potential energy of the ball on the upper deck, relative to the lower
deck, is

∆U = mg∆H (1.5)

(see Fig. 1.3). This energy is converted to extra kinetic energy on the lower
deck. Therefore, the kinetic energy K ′ of the ball on the lower deck is:

K ′ = K + ∆U (1.6)

Now, if we insert into the Equation 1.6 the expressions from the three pre-
ceding Equations, we obtain:

m(V ′ 2x + V 2
y )

2
=
m(V 2

x + V 2
y )

2
+mg∆H (1.7)

Which simplifies to:

V ′ 2x + V 2
y = V 2

x + V 2
y + 2g∆H, (1.8)

and even more:
V ′ 2x = V 2

x + 2g∆H. (1.9)
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We can use this result to obtain an expression for the total speed of the ball
on the lower deck, with V ′x eliminated:

V ′tot =
√
V ′ 2x + Vy =

√
V 2
x + 2g∆H + V 2

y (1.10)

And the expression for Vtot =
√
V 2
x + V 2

y we got in the Eq. 1.2.
Nowe, we have enough formulae to readily obtain sin(θi) and sin(θr. From

Fig. 1.5 we find that:

sin θi =
Vy
Vtot

=
Vy√

V 2
x + V 2

y

, (1.11)

and for sin θr we get:

sin θr =
Vy
V ′tot

=
Vy√

V 2
x + V 2

y + 2g∆H
(1.12)

Now, we can calculate the ratio of the sinuses we wanted to get:

sin θi
sin θr

=

√
V 2
x + V 2

y + 2g∆H√
V 2
x + V 2

y

=

√
1 +

2g∆H

Vtot
(1.13)

It can be rewritten in a more compact form:

sin θi
sin θr

=

√
1 +

gm∆H

mV 2
tot/2

=

√
1 +

∆U

K
(1.14)

The rightmost term in the above equation shows that for a given ∆U , for
all “light particles” of the same kinetic energy K the sin θi sin θr ratio has
the same constant value, not depending on the angle of incidence θi – i.e.,
the Newton’s theory of refraction is consistent with the Snell Law, Q.E.D.

***** End of the “extra” material *****
Newton also worked out an explanation for light diffraction effects – well,

from today’s perspective we can say it was pretty awkward, and even then
interested scientist did not consider it very elegant. However, the successful
quantitative explanation of light refraction, together with the great splendor
Newton has earned by his discoveries of Laws of Dynamics, and the law of
universal gravitation, were enough – Newton’s theory was widely accepted,
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whereas the Huyghens theory of light waves was soon almost forgotten. It
did not help that Huyghens theory of wave-like light nature also was fully
consistent with the Snell Law (we will discuss in detail somewhat
later.

Anyway, the “mortal blow” for the theory of “light particles” was de-
livered a century (97 years, to be exact) after the publication in 1704 of
Newton’s great treatise on optics (titled Opticks: or, A Treatise of the Re-
flexions, Refractions, Inflexions and Colours of Light – you may read more
about that famous Newton’s book from a Wikipedia article, if you click on
the blue title provided). The “executioner” was a Britsh 0 scientist Thomas
Young, who carried out an experiment, today widely accepted as one of the
most important experiments in physics of all times. Namely, he observed that
if sunlight passes through a a system of two narrow parallel slits, it forms a
pattern of bright and dark “fringes” on a screen placed in a darkened room
behind the slits (we will discuss the Young’s experiment in greater detail
somewhat later, but if you wish to learn more about it right now, please
click on this link to an Encyclopedia Britannica article, an watch the movie
enclosed – or on this link to a good YouTube short movie).

Such an effect could only be explained on the grounds of the Huygens
wave theory. Huygens was vindicated, and the Newtons theory of “light
particle” was “pronounced dead”.

The period of nearly 90 years which followed, was a series of great tri-
umphs of the wave theory of light. On its ground Fresnel and Fraunhofer
worked out elegant theoretical approaches to light diffraction (see this Hy-
perphysics entry for details) – calculations based on their theories were found
to be in excellent agreement with experimental observations. Another great
achievement was the explanation of the phenomenon of light polarization.
In 1849 Armand-Hippolyte-Louis Fizeau, a highly talented French experi-
menter, performed the first “on-Earth” measurements of speed of light c1.

1Earlier determination of c had been done by astronomical methods – one of them was
based on the Ole Roemer’s idea of determining c by observing anomalies in the eclipse
time of Jupiter’s moon Io (a common textbook error is that Roemer had determined c to
be 131 000 miles/second – Roemer could not present any number, because he did not
know the Earth’s orbit diameter – it was determnied with nearly-perfect accuracy
only from observations of Venus transits across the Sun’s face in 1761 and 1769). In 1727
an English astronomer, James Bradley, discovered the phenomenon of stellar aberation,
i.e., an apparent shift of a star position due to the orbital motion of Eart (see the second
picture in the linked page). The c value determined by Bradley is given in many texbooks
as 301,000 km/s – again, it’s probably a mistake, Bradley did not know the orbital speed
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The “on-Earth” result was important, because the the earlier determina-
tions, obtained by astronomical methods, and not by using a “hands-on”
apparatus, were not universally trusted. Fizeau’s results obtained by the
tooth-wheel method, and shortly afterwards a more accurate result obtained
by a rotating-mirror method developed by Leon Foucault, were fully trusted.
What more, Fizeau and Foucault were able to directly determine the speed
of light in water, showing that it was slower than in vacuum – in agreement
with the Huyghens’ wave theory, but in striking disagreement with Newton’s
“corpuscular” theory, delivering one more mortal blow to the latter.

So, after all such developments nobody had doubts anymore that light
has a wave-like nature. Still, it was not clear what was undulating in the
light wave? In all other known form of waves, there always “was somtething”
to vibrate: in sound waves, it was the air density; in waves on water, it was
water oscillating up and down; and so on. But in light? It was easy to check
that light was passing without any problem through vacuum. Vacuum is an
empty space, what can vibrate in it? It seemed to be something magic...

The answer to that riddle was found by a Scottish scientist James Clerk
Maxwell. His great achievement was to unify in 1861-62 the theories of
electric field and magnetic field. Written in “mathematical language”, the
theory has the form of four differential equations (soon scientists started call-
ing them the Maxwell Equations). Differential equations differ from algebraic
equations in that their solutions are not numbers, but functions – and often
sets of differential equations have more than one possible solutions. When
examining his equations, Maxwell discovered that one of the possible solution
has the form of a function describing a propagating wave, the so called “wave
function”. He called it an “electromagnetic (EM) wave”. And from the wave
equation one can figure out the speed of the wave’s propagation – the speed
Maxwell obtained from his calculations was very close to the measured speed
of light c.

So, it seemed that the mystery of the light’s nature was finally solved!
Only one thing was missing, the Maxwell EM waves still existed only on
paper. A proof was necessary that the EM waves have a real existence.
The only way of making light in the middle of the 19th century was from
bodies heated up to high temperatures (e.g., heated gases such as candle or
torch flames, molten iron, etc.). But was the glow from a hot body really
an EM wave? It was completely unclear how Maxwell Equations could be

of Earth, so he could not obtain a result that accurate.
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used for describing the phenomena occurring in hot bodies (in fact, physical
phenomena responsible for the emission of light by heated bodies became
clearly understood only in the 20th Century).

In Maxwells days, a sufficient proof for the existence of EM waves would
be if someone could create an such waves using an apparatus, the action
of which would be consistent with the conditions necessary for generating
EM waves, predicted by the Maxwell Equations. And such an apparatus
was successfully build by in 1886 by a German accomplished experimental
physicist, Heinrich Hertz. Guided by the Maxwell’s theory, he build devices
that from today’s perspective can be called a “simple radio transmitter”
and a “very simple radio receiver”. And he was able to send signals over a
distance from the transmitter to the receiver! He also performed thorough
studies of what carried the signal from the transmitter to the receiver, and
showed that it had all properties of an EM wave predicted by the Maxwell’s
theory (Regretfully, Maxwell did not live to see that moment of the great
triumph of his “brainchild” – he died in 1879). Hertz waves were not light
– their wavelengths were meters, million times longer than the wavelength
of visible light. But since all other characteristics of the “Hertz waves” and
light appeared to be fully consistent, it was widely accepted that the nature
of light had been finally explained.

However, it turns out that Mother Nature has a perverse sense of hu-
mor. Namely, Heinrich Hertz, the same person who dispelled last doubt
that light is an electromagnetic wave, during his famous experiments for-
tuitously observed a strange effect caused by light incident on a metal. In
short, he discovered that ultraviolet light incident on metal cause “the emis-
sion of electric charge” from its surface. Intrigued by Hertz’s observations,
Alexandr Stoletov, a Russian physicist, conducted first thorough research on
that strange effect over the 1887-91 period. His work stimulated undertaking
more studies by other scientists – by the end of the 19th century it became
clear that light can “knock out” electrons from a metal. The name coined
for that mysterious phenomenon was Photoelectric Effect (PE).

Such discovery came out as a big embarrassment to scientists. It seemed
obvious to everybody that any “wave” has a wide front. It was known how
much energy was needed to eject an electron from a metal, and it was clear
that the wave must deliver such energy to a small area, of a size comparable to
one or a few atoms, in a very short time, because “kicking out electrons from
metal” was found to be a very quick process. So, the power of a continuous
wave capable of ejecting electrons from metal surface would in microseconds
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cause the metal to melt and evaporate. Yet, the PE was occurring even for
a very low light intensity!

The scientist who resolved that “mystery” in 1905 was nobody else than
Albert Einstein (in 1921, he was awarded a Nobel Prize for that). One can
say that Einstein “resurected” the theory of light particles. But definitely
it was not a “return with vengeance” of Newton’s light particles. Einstein’s
“particles”, whom he called light quanta, were – I’m looking for a good word –
objects one can think of as created by “fragmentation” of a wave. Einstein’s
term “light quanta” did nor survive for very long, somebody started using
instead the term photon, which was widely accepted and people started using
it right away. So, a photon is an individual object that carries a portion of
energy – like a particle. But it also retains some typical characteristics of a
wave – namely, the wavelength and the frequency. The photon energy (E)
and its frequency (the common symbols used are either the Roman f , or the
Greek ν) by the famous Einstein’s formula:

E = hf or E = hν (1.15)

where h is the so-called Planck Constant, h = 6.6261×10−34J·s (note that the
frequency unitg is 1/s, so that the energy calculated by the above equation
comes out in the right unit, the Joule).

In view of the above, one can hardly say that Einstein “resurrected” New-
ton’s light particles – the latter hardly ‘knew” what the wavelength and the
frequency was. So, we cannot say that Einstein’s theory was a “resurrection”
of Newtons theory – a much better term would be reincarnation. You know
that reincarnation is a new version of something from the past, but not nec-
essarily of the same kind as the old version. For instance, a sweet person
may be a reincarnation of a dove or a lamb, and a person of violent temper
may be the reincarnation of a lion or a tiger.

Then, who is wrong and who is right? These who say that light is a wave,
or those who say that it has a corpuscular, i.e., a particle-like nature? no one
is wrong, they are both right. Light simply exhibits a particle-wave duality,
a dual nature . In a distant analogy to Dr. Jekyll and Mr. Hyde2 from the
famous 1886 short story by Robert Louis Stevenson. Dr. Jekyll and Mr.
Hyde were the same person, but of completely different personalities – and
one could be transformed into the other, or vice versa.

2For me, a better title would be Dr. Jekyll and Mr. O’Hyde, because in Polish, my
native language, the word Ohyda means something or someone extremely evil.
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In certain physical situations – or, one can say, in certain physical phe-
nomena – light clearly exhibits its wave-like nature: for instance, in diffrac-
tion and interference effects, or in such a simple effect as refraction. In photo-
electric effect light clearly demonstrates its “corpuscular”, i.e., its particle-like
nature. Another example of the latter is emission of light by atoms.

We will begin with discussing a number of effects for which a description
in terms of the wave theory is appropriate – and only towards the end of
the course, we will switch to phenomena in which light clearly demonstrates
its particle-like nature. Therefore, Chapter Two will begin with a general
description of waves.
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