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Forward

Expectations of this course

This course straddles three subjects: Physics, Computer Science and Mathe-
matics. In ten weeks, we won’t be able to thoroughly cover any one of these.
Instead, I will focus on giving you a taste of each of them, and a picture of
how you can use math and computers together to deepen your understanding
of Physics.

This course will focus its Physics content on Newtonian mechanics. You
will also study the same Physics in other courses, but my hope is that you will
understand it more deeply through this course. At the same time, you should
learn some elementary programming, and will be introduced to some concepts
in differential equations that you most likely will not encounter in your math
classes until next year.

There is no way to learn programming, except by programming, and that
is what you will be doing in this course.

Why python was chosen

We have chosen to teach this course in the Python programming language for
several reasons. One is that it is particularly easy to learn, and has a wide
array of online tutorials and introduction. It has a clean syntax that makes
most programs easy to read. On top of all this, it is a language that is actually
used in scientific computing, as well as in the wider programming community.

Approach used in math

We hope in this course to teach the meaning of calculus, not to preset proofs or
carefully guarded statements. Numerical methods lend themselves to attaining
an intuitive understanding of the significance of vectors, derivatives and inte-
grals, without getting bogged down in analytical approaches that may seem
obscure or even useless when they are first encountered. I hope that having
seen how useful these concepts actually are, students will be eager to learn the
analytical approaches that can so often lead to even deeper insights.

v



vi FORWARD

What is expected of classwork

• Every definition of a constant value should include units.

>>> ball.mass = 10 # kg

>>> ball.pos = vector(10,0,0) # meters

• The units should be correct in every equation in the code.

• The argument to sin or cos must be unitless, and that should be clear
from the code.

>>> x = sin(t) # bad

>>> omega = 1 # 1/s

>>> x = sin(omega*t) # good

• Use vector operations when possible.

>>> dr = r1 - r2 # good

>>> dr = vector(r1.x-r2.x, r1.y-r2.y, r1.z-r2.z) # bad

• When possible, complicated equations should be broken down into sepa-
rate definitions with physically-motivated names:

>>> # bad: (but I’ve seen much worse!)

>>> s.velocity=s.velocity+(vector(0,-9.8,0)-0.2*s.velocity)*dt

>>> # good:

>>> gamma = 0.2 # 1/s

>>> g = vector(0,-9.8,0) # meter per second^2

>>> s.acceleration = g - gamma*s.velocity # m/s^2

>>> s.velocity = s.velocity + s.acceleration*dt # m/s

0or equivalently, in radians



1 Introduction to Python

Python1 is a general-purpose, high-level programming language, which is widely
used in scientific computations when performance is not a factor. This course
will be taught using the python programming language. Most problems are
expected to be solved by writing python programs, and examples will be given
in python. We will also use the vpython package2, which provides exceptionally
easy realtime three-dimensional graphics.

1.1 Running python using idle

As a calculator

Python is an interpreted programming language, which means that you can
run python interactively, just like you use your calculator. One easy way to
run python is to use the program idle, which you may open from the Applica-
tions/Programming menu. When you start idle, you will see a bunch of text,
leading up to a prompt that looks like:

>>>

This is the python prompt. In this text, python code will be indicated with
a python prompt, but you will not want to type the “>>>” when entering it
into python. You may type any python expression at the python prompt, and
when you hit “return”, python will evaluate this expression an show you the
result. Try typing

>>> 1+2

and see what the result is—it shouldn’t be surprising. Similarly, try multiplying
(1+2*2) and exponentiating (1+2**3).

Saving a program in a text file

While it is very convenient to run python interactively, it is also often helpful—
for instance, when turning in homework assignments—to be able to save your

1For more information on python, including links to numerous tutorials, see
http://www.python.org

2For more information on vpython, see http://vpython.org

1



2 CHAPTER 1. INTRODUCTION TO PYTHON

work, edit it at your leisure, and run it again. Naturally, python supports
this type of work pattern. There are numerous editors that you can use for
your python programs, but one of the simplest is idle, which we can also use
to explore python interactively. You can start a new file by selecting “New
Window” in the file menu of idle. The file is actually created when you save
it. Let’s create a file named problem-1.1.py by creating a new window and
then saving it. 3, try entering an expression such as

1+2*3

Now save the file, and in run your new program by selecting “Run Module”
from the Run menu. You actually won’t see anything happen. The reason is
that when you run python non-interactively, python doesn’t print the values
of any expressions you might write. In order to convince python to print the
value, you will need to use the print function:4

print(1+2*3)

When you run this program, you will need to look at the “Python Shell”
window in order to see the output. You could alternatively run your python
script from the bash shell (see Appendix A), but for this class you will not need
to use the bash shell.

You can also group several statements in sequence, as in

print("Hello world!")

print(1+2*3)

print("Two to the third is")

print(2**3)

1.2 Imports

Python has many modules which add extra functions and functionality. For
instance, if you try running

>>> sin(pi)

you will get an error message, indicating the the function ‘sin’ is undefined.
The problem isn’t that python is ignorant of basic trigonometry, but rather
that these functions are hidden until you import them. In this class, we will
almost exclusively be using functions that are exported by the visual module,
which you can access by typing:

3There will always be another window, labelled something like “Python Shell”, which
you can use to run python code interactively.

4The print function is actually a built-in statement, but you can use it like a function
for the purposes of this class. This will change in python 3, so that print will be an ordinary
function, as it ought to be.
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>>> from visual import *

>>> sin(pi)

1.2246467991473532e-16

Now we have successfully computed the sin(π)5. Ordinarily, one would import
from math, but the visual module re-exports numerous useful functions from
other modules, and throughout this course we will simply import visual.

There is one more import you should make, which is

>>> from __future__ import division

This changes the divide operator so that it always behaves as ordinary division.

1.3 Comments

Any text on a line following a # (“pound”) sign is ignored by python, and is
what we call a comment . Comments are written to benefit any humans who
might want to read a computer program.

To illustrate a comment, let’s write our first 3D program:6

>>> from visual import *

>>> from __future__ import division

>>> box() # This creates a 3D cube!

You can now use the right mouse button to rotate this box. This is not much
of a 3D program, but it’s also rather compact.

In this class you will be often expected to add comments clarifying the
meaning of your code—in particular, the units of your numerical constants.

1.4 Variables

A variable in programming is very similar to the mathematical concept of a
variable. It is essentially a name associated with an object or value. Variables
are created using the = (assignment) operator, which is also used to modify the
state of variables.

>>> x = 1

>>> y = 10

5You might be wondering how successful we were, since the exact answer for sin(π) is
0. We got a non-zero answer due to roundoff error, which is due to the limited number of
bits the computer uses to store numbers. Although many of the practices of computational
science are related to the need to mitigate the effects of roundoff errors, in this course we
will gloss over these issues, which will be covered in detail in subsequent courses.

6You can either run this interactively, or save it in a text file. From this point on, python
code in this book will always be annotated with >>> so that you can easily distinguish
python code from its expected output—or from shell commands. Also note that in future,
the from visual import * and from future import division will be omitted from all
program listings.
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>>> print(x/y)

0.1

Using variables, we are able to modify objects. For instance, we can change
the color of a box (try this interactively):

>>> cube = box()

>>> cube.color = color.green

>>> cube.color = color.blue

As you can see in the margin figure (possibly the most boring figure ever!),
we can change the color of a cube. The ‘.’ operator allows us to modify
properties of objects. VPython defines a number of properties, such as color,
pos (position). Play a bit with the following examples.

>>> floor = box()

>>> floor.color = color.green

>>> floor.size = (2,0.2,2)

>>> ball = sphere()

>>> ball.color=color.red

>>> ball.radius=0.55

>>> ball.radius = 0.6

You can also set properties when you create an object.

>>> disk = cylinder(color=color.yellow, radius=sqrt(2)/2, length=0.1)

1.5 Assignment semantics

In python, the = operator behaves in one of two ways. If the left hand side is
a simple variable, as in

>>> ball = sphere()

the left hand side (ball in this case) is set to be a name for the object on the
right hand side (which is in this case an anonymous sphere). In contrast, if the
left hand side is a sub-object, then the object referenced on the left hand side
is actually modified. So

>>> ball.color = color.blue

doesn’t just create a new name for the object color.blue, but actually modifies
the existing object which is called ball.

It may sound pretty confusing, but it’s actually quite simple, as hopefully
the following examples will illustrate.
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Problem 1.1 Standard assignment semantics Try to predict the result
of the following program, and then execute it interactively.

>>> a = 10

>>> b = a

>>> b = 0

>>> print(a)

What is the final value of a? Why?

Problem 1.2 Assignment to objects Try to predict the result of the fol-
lowing program, and then execute it interactively. What is the final value of
a.taste? Why, and how does this differ from the result of Problem 1.1?

>>> a = sphere()

>>> a.taste = "sour"

>>> b = a

>>> b.taste = "sweet"

>>> print(a.taste)

Assignment to and from vpython objects

Alas, the above description of python’s assignment semantics does not fully
apply to visual python, which is an entirely different beast. Try to guess the
value of b in the two programs below:

>>> a = sphere()

>>> a.pos = vector(0,0,0)

>>> b = a.pos

>>> a.pos = vector(1,1,1)

>>> b

>>> a = sphere()

>>> a.foo = vector(0,0,0)

>>> b = a.foo

>>> a.foo = vector(1,1,1)

>>> b
The trouble here is that the data member a.pos is a native vpython data

member, and is treated specially—and in an unhelpful manner at that! To
avoid this confusion, never place a vpython native field alone on the right hand
side of an assignment. One option for avoiding this is to multiply vectors by
one. Another option is to wrap them in a constructor function, as in

>>> b = vector(a.pos)

1.6 Functions

In this course, we will rarely define functions, since we’ll be writing quite simple
programs. However, functions are at the core of all “real” programs. A function
is defined as

>>> def add(x,y):

... return x + y
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Thes defines a function called add, which accepts two arguments, which we
call x and y. The value of this function is just the sum of its arguments. The
return statement both exits the function, and determines its value. You can
call this function with code such as

>>> add(1,2)

Function definitions demonstrate an interesting feature of python, which is
its white space determined block structure. A block begins with a line ending
with a colon, and is indented by some amount. The block continues as long
as the indentation remains the same. In this manner, you can define functions
that extend over multiple lines. The following (foolish) example demonstrates
a multi-line function definition.

>>> def add(x,y):

... a = x

... b = y

... return a + b

Note on lexical scoping

The term lexical scoping refers to which parts of the code can “see” the names
of variables. By default, variables in python are locally scoped, meaning that
they are visible only in the function in which they are defined. This means
that each function can be read and understood independently, since even if the
names x, y, a and b are used elsewhere in the code, the above function doesn’t
refer to the same x, y, a and b.

1.7 Conditionals

Functions would be pretty boring if they always did the same thing. The if

statement allows you to write code that does something different based on some
condition.

>>> a = 1

>>> if a > 0:

... print("It’s greater than zero!")

Note that the if statement, like function definitions, uses a block determined
by indentation.

Of course, at times you want to do something in either case, in which case
you want the else option. You can try the following, which writes a program

>>> def announce(a):

... if a > 0:

... print("It’s positive!")

... else:

... print("It’s not positive!")
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Finally, you can nest if statements, as in:

>>> def announce(a):

... if a > 0:

... print("It’s positive!")

... else:

... if a == 0:

... print("It’s exactly zero!")

... else:

... print("It’s negative!")

Boolean expressions

math python
= ==

> >

< <

≥ >=

≤ <=

and and

or or

not not

Boolean operators

In order to effectively use the if statement, we need to be able to express
values that are true or false. These are called booleans. Although you can
explicitly specify boolean values by typing true or false into your program,
most often you will use the comparison operators you’re familiar with from
math, which are shown in the margin.

Problem 1.3 minimum(a,b) Write a function that returns the minimum
of its two arguments.

Problem 1.4 Is a divisible by b? Write a function that determines if one
of its arguments is evenly divisible by the other. You may want to use the
standard library function round which rounds a number to the nearest integer.

1.8 Looping

In programming, loops are constructs that allow us to do something repetitively.
Loops are at the core of most programs simply because repetitive work is what
most of us don’t like to do by hand, but computers are very good at (because
they don’t get bored). There are several ways to create a loop in python, but
in this course, we will use only one of them, the while loop.

>>> i = 0

>>> while i < 10:

... print(i)

... i = i + 1

This example is a pretty standard sort of loop. We first create a variable
initialized to 0. Then we begin the while loop. A while loop has a boolean
expression, and it keeps executing while that expression is true. Next comes a
block of code, which ought eventually to make the expression true, otherwise
you’ve created an infinite loop!

The last line in this example renames the i variable to the value i+1. This
is an extremely common idiom, in which we update a value during a loop. In
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fact, it’s so common that python (and many other languages) has a special
operator for this.

Problem 1.5 Identifying primes Write a function that given an integer n
determines if it is prime. There are a number of algorithms you can use, some
more efficient than others, but for now can simply check using your function
from Problem 1.4 whether n is divisible by any integers smaller than itself but
greater than 1.

Problem 1.6 = versus == What is the difference between the following two
statements?

>>> i = i + 1 >>> i == i + 1

Problem 1.7 Factorial Implement a factorial function, which computes n!,
which is the product of all integers from 1 to n. The factorial of 0 is 1.

1.9 Recursion

Finally, we come to recursion, which is when a function is defined in terms
of itself. We won’t often be using recursion in this class, but it’s useful, so
I’ll mention it here very briefly. As an example, I will introduce a solution to
Problem 1.4 that does not use either the round function or division. It’s also
extremely slow...

>>> def isdivisible(a,b):

... if a == b:

... return True

... if a > b:

... return isdivisible(a-b,b)

... return False

Problem 1.8 Factorial II Implement your factorial function using the re-
cursion relation that if n > 0 then n! = n(n− 1)! and 0! = 1.



2 Position—the simplest vector

The meaning in Physics of position (closely related to displacement) is almost
identical to the every-day usage. The primary distinction is that by position, we
mean only the location of the center of a point, not the orientation of a body.
Position is described by a vector, which must be specified relative to some
coordinate system. A displacement is the difference between two positions,
which is also a vector. Both position and displacement have units of distance,
which is meter in the SI system of units.

2.1 What is a vector?

A vector is a quantity that is completely specified by a direction and magnitude.
Vectors lie at the core of a physicist’s description of the world around us. In
this text, vectors are typeset in bold face, as in r or v. When you write vectors
by hand, you will write them as ~r or ~v. The position is commonly written using
the symbol r.

We commonly define vectors relative to some coordinate axes, which we will
call x̂, ŷ and ẑ. The common notation uses the “hat” symbol ‘̂’ to represent a
unit vector . A unit vector is a vector with magnitude of one. Together, x̂, ŷ
and ẑ form a basis set ,1 meaning that we can describe any vector as a sum of
these three. Thus, we will often write the position vector as

r = rxx̂ + ryŷ + rz ẑ (2.1)

where rx, ry and rz are the components of the vector r. You can think of them
as the coordinates on a three-dimensional grid. Unit vectors are inherently
unitless, so the units of the components rx, ry and rz of a position vector must
be the same as the units of the position vector itself, which is meters—in SI
units.

A scalar is a quantity that has a magnitude but no direction. Moreover,
a scalar is defined to be a quantity whose value does not change when the
coordinate system is rotated. We typeset scalar quantities in italics, as in r or
t. Common examples of scalars include quantities like distance, radius, time or
energy.

1In particular, they form an orthonormal basis set—the best kind—but we won’t go into
any more detail on that just yet.

9
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2.2 Vector operations

Vectors can only interact with scalars in a limited number of ways. Knowing
this allows us to easily catch certain sorts of errors.

The magnitude of a vector is a scalar. We can compute the magnitude of a
vector using the Pythagorean Theorem:

|a| =
√
a2
x + a2

y + a2
z (2.2)

Two vectors that have the same units may be added or subtracted. Addition
and subtraction affect both the

a = b + c (2.3)

axx̂ + ayŷ + az ẑ = bxx̂ + byŷ + bz ẑ + cxx̂ + cyŷ + cz ẑ (2.4)

= (bx + cx)x̂ + (by + cy)ŷ + (bz + cz)ẑ (2.5)

ax = bx + cx (2.6)

A vector may be multiplied by a scalar—this is referred to as scalar multi-
plication. In this case, the direction is unchanged, while its magnitude (and
possibly units) are changed.

F = ma (2.7)

In addition, there are two ways that pairs of vectors may be multiplied. The
dot product is a multiplication of two vectors that results in a scalar. The dot
product of any vector with itself is the square of its magnitude.

a · b = axbx + ayby + azbz (2.8)

Two vectors are said to be orthogonal if their dot product is zero.
Finally, the cross product takes two vectors and produces a third vector.2

a× b = (aybz − bzay)x̂ + (azbx − axbz)ŷ + (axby − aybx)ẑ (2.9)

The cross product of two parallel vectors is zero, and the result of a cross
product of two vectors is orthogonal to either of those vectors.

a× a = 0 (2.10)

a · (a× b) = 0 (2.11)

b · (a× b) = 0 (2.12)

(2.13)

In addition, the cross product is odd when commutated, meaning that

a× b = −b× a (2.14)

2Technically, the result of a cross product is a pseudovector , because it changes direction
when the coordinate system is inverted.



2.3. PUTTING VECTORS INTO PYTHON 11

2.3 Putting vectors into python

In visual python, you can create a vector from its components as follows:

>>> r = vector(1,0,0) # This is a vector in the x direction

>>> arrow(axis=r, color=color.blue)

Here we visualize the vector by creating an arrow. Of course, we can also
specify the vector directly in the arrow function:

>>> arrow(axis=vector(1,0,0), color=color.blue)

We can compute the magnitude of a vector using the abs3 function, which is
also used to compute the absolute value of a scalar.

>>> abs(vector(1,1,1))

We can perform scalar multiplies using the * operator as we would for ordinary
multiplication.

>>> r = vector(1,0,0) # in meters

>>> s = -3.0

>>> arrow(axis=r, color=color.blue)

>>> arrow(axis=s*r, color=color.red)

Here you can see an annoyance of the arrow object in visual python: when we
scale its length, its diameter scales as well. We can rectify this by specifying
the diameter manually:

>>> r = vector(1,0,0) # in meters

>>> s = -3.0

>>> arrow(axis=r, color=color.blue, shaftwidth=0.1)

>>> arrow(axis=s*r, color=color.red, shaftwidth=0.1)

The axis of an arrow defines the position of its head relative to that of its
tail. The position of its tail is defined by its pos, so we can shift our arrows by
adjusting their pos

>>> v1 = vector(1,0,0) # in meters

>>> v2 = -2*v1 # meters

>>> a1=arrow(axis=v1, color=color.blue, shaftwidth=0.1)

>>> a2=arrow(axis=v2, color=color.red, shaftwidth=0.1)

>>> a1.pos = vector(-1.5,1,0) # meters

3You can also use the mag function to compute the magnitude of a function, but this
function will only work on vectors, so by remembering abs you remember two birds with one
stone...
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Problem 2.1 Vector arithmetic Work out by hand what the output of
the following python programs should be, and draw a picture of what output
you expect. After showing the instructor your predictions, try running the
programs, and see how your predictions compared.

Addition of two vectors

>>> a = vector(1,2,0)

>>> b = vector(2,0.5,0)

>>> arrow(axis=a, color=color.blue)

>>> arrow(axis=b, color=color.red)

>>> arrow(axis=a+b)

Subtraction of two vectors

>>> a = vector(1,2,0)

>>> b = vector(2,2,0)

>>> arrow(axis=a, color=color.blue)

>>> arrow(axis=b, color=color.red)

>>> arrow(axis=a-b)

Multiplication of two vectors

>>> a = vector(1,2,0)

>>> b = vector(2,2,0)

>>> arrow(axis=a, color=color.blue)

>>> arrow(axis=b, color=color.red)

>>> arrow(axis=a*b)

Cross product of two vectors

>>> a = vector(1,2,0)

>>> b = vector(2,2,0)

>>> arrow(axis=a, color=color.blue)

>>> arrow(axis=b, color=color.red)

>>> arrow(axis=cross(a,b))

>>> arrow(axis=cross(b,a), color=color.yellow)

Dot product of two vectors

>>> a = vector(1,2,0)

>>> b = vector(2,2,0)

>>> arrow(axis=a, color=color.blue)

>>> arrow(axis=b, color=color.red)

>>> print(dot(a,b))

>>> arrow(axis=dot(a,b))



2.4. MOVING THINGS AROUND 13

Problem 2.2 Making a box out of cylinders The cylinder object in
VPython is created using code such as

>>> cylinder(pos=vector(10, 0, 0), axis=vector(10,0,0))

Cylinders are constructed using two vectors, the pos and the axis. The pos

describes the location of one end of the cylinder, while the axis is the displace-
ment vector from the first end of the cylinder to the other end.

Make a box with corners at ±xmaxx̂± ymaxŷ± zmaxẑ, where the constants
xmax, ymax and zmax are defined by

>>> xmax=15

>>> ymax=10

>>> zmax=5

As a challenge, you can use for or while loops to reduce the number of
times cylinder occurs in your code to a minimum.

Problem 2.2 Making a box
out of cylinders2.4 Moving things around

Just placing balls on the screen isn’t very exciting. Let’s start moving things
around. To start with, let’s make a ball move on one direction with constant
velocity. In this class, you must always add a comment defining the units of any
constants you define. Units provide an important check on the correctness of
physical equations, be they code or formulas (this is also known as “dimensional
analysis”).

>>> s=sphere()

>>> t = 0 # seconds

>>> dt = 0.01 # seconds

>>> v = 10 # meters/second

>>> while t < 1: # second

... s.pos = vector(v*t,0,0) # meters

... t = t+dt

The first thing you will notice with this code is that it finishes much too rapidly
to see what has happened. To slow it down, we add a call to the rate function,
which ensures that our loop happens no more than 1/∆t times per second.

>>> while t < 1: # second

... s.pos = vector(v*t,0,0) # meters

... t = t+dt

... rate(1/dt)

Even with the rate function, the motion is pretty confusing to follow. The
reason is that visual python automatically zooms the camera so as to keep
all the objects in view—while it remains pointed at the origin. This is often
a helpful feature, but doesn’t really help when there is just one object to be
seen.
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There are two solutions to this dilemma. One is to tell vpython how big
you want the field of view to be, and to instruct it not to change this field. We
can do this with:

>>> scene.range = 10 # meters

>>> scene.autoscale = False

>>> s=sphere()

>>> t = 0 # seconds

>>> dt = 0.01 # seconds

>>> v = 10 # meters/second

>>> while t < 1: # second

... s.pos = vector(v*t,0,0) # meters

... t = t+dt

... rate(1/dt)

Another option, which is often nicer—particularly when your objects unexpect-
edly depart from their intended trajectory—is to add other objects to provide
a stationary frame of reference. One such option would be a large slab:

>>> ground=box(color=color.red)

>>> ground.size = (22,1,2) # meters

>>> ground.pos = vector(0,-1.5,0) # meters

>>> s=sphere()

>>> t = 0 # seconds

>>> dt = 0.01 # seconds

>>> v = 10 # meters/second

>>> while t < 1: # second

... s.pos = vector(v*t,0,0) # meters

... t = t+dt

... rate(1/dt)

Problem 2.3 Sinusoidal motion Write a program to make your ball move
with sinusoidal motion in one dimension. As you will learn later, this is the
motion of a simple harmonic oscillator (fancy Physics talk for a spring).

2.5 Circular motion

Now let’s consider uniform circular motion. Circular motion is most easily
expressed using polar coordinates. The azimuthal angle θ varies linearly with
time, such that

θ(t) = ωt (2.15)

where ω is the angular speed, which has units of radians per second. The radius
r remains constant. Expressing the displacement in cartesian coordinates, we
obtain:

r(t) = R sin(ωt)x̂ +R cos(ωt)ŷ (2.16)
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>>> s=sphere()

>>>

>>> t = 0 # seconds

>>> dt = 0.001 # seconds

>>> R = 10 # meters

>>> omega = 2 # radians/second

>>> while t < 2*pi/omega:

... s.pos = vector(R*sin(omega*t),R*cos(omega*t),0)

... t = t+dt

... rate(1/dt)

Problem 2.4 Figure eight Modify the circular motion from the previous
section to cause the ball to move in a figure eight pattern, as depicted in the
figure.

Figure 2.1: Problem 2.4 Figure eight





3 Velocity—making things move

The velocity is the derivative of position with respect to time.

v(t) ≡ dr(t)

dt
(3.1)

At this point, it is worth noting that it is customary to omit the parentheses
reminding us that position and velocity are functions of time, so that Equa-
tion 3.1 would commonly be written as

v =
dr

dt
(3.2)

This is a mathematical definition of velocity, but what does velocity mean? To
answer that question, let us explore the question of what a derivative means.

3.1 What is a derivative?

Mathematically, a derivative is defined as

dy

dx
≡ lim

∆x→0

y(x+ ∆x)− y(x)

∆x
, (3.3)

and if this limit is well-defined, the function y(x) is called differentiable.1 Note
that in this equation, we use the greek letter ∆ to mean “a change in”. This
is a common and customary usage. The numerator is also a change: it is the
change in y when x changes by an amount ∆x. So we can crudely write that

dy

dx
= lim

∆→0

∆y

∆x
(3.5)

In other words, the derivative dy
dx is a a little change in y divided by a a little

change in x. One helpful way of thinking of this is as the slope of the plot

1In fact, the Equation 3.3 is not always the most useful definition for a derivative. One
common definition is the centered derivative:

dy

dx
≡ lim

∆x→0

y(x+ ∆x/2)− y(x−∆x/2)

∆x
(3.4)

In the limit as ∆x → 0, it is evident that these two definitions are equivalent for any
smooth function. The advantage of Equation 3.4 accrues when we choose to approximate
this derivative using a small but nonzero value for ∆x.

17
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of y versus x, since ∆y
∆x is just that slope. However, when y is a vector (as is

the case for the velocity), the interpretation of its derivative as a simple slop
is complicated.

Thus the velocity dr/dt is a little change in position divided by the corre-
sponding little change in time. The velocity is the rate of change of position,
or how fast the position is changing with time, and in what direction. Velocity
is a vector with units of meter/second. The magnitude of the velocity is called
the speed. Thus speed is a scalar, while velocity is a vector.

x

y

x

y

y
x

3.2 The finite difference method

The finite difference method is an approach for numerically evaluating a deriva-
tive, and corresponds to simpley evaluating Equation 3.3 for some finite value
of ∆x. This is the standard method for computing a numerical derivative,
although it is relatively uncommonly used, simply because it is usually easy to
work out derivatives analytically. It does, however, often find use as a means of
checking the correctness of an analytically-computed derivative. In the follow-
ing example, we plot the error introduced when performing a finite-difference
derivative of sin(x), using our knowledge that the derivative of this function is
actually cos(x)

>>> from visual.graph import * # 2D graphing

>>> gdisplay(xtitle=’delta x’, ytitle=’log error’,

... foreground=color.black, background=color.white)

>>> error = gcurve()

>>>

>>> # The following is a finite-difference derivative of sin(x)

>>> def dsin(x,dx):

... return (sin(x+dx) - sin(x))/dx

>>>

>>> x = 0.1 # radians

>>> dx = 1 # radians

>>> while dx > 1e-14: # radians

... error.plot(pos=(log10(dx),log10(abs(dsin(x,dx)-cos(x)))))

... dx = dx/1.1

As you can see in the generated plot, the error decreases as we decrease the
size of ∆x—but only up to a point. It makes sense that the error should
decrease as we decrease ∆x, since the derivative is defined to be the limit as
∆x approaches zero. However, when ∆x becomes too small (around 10−7 in
this case), roundoff causes our error to begin increasing.

Problem 3.1 The centered finite difference method Repeat the exercise
in Section 3.2 using the central difference approach described in Equation 3.4.
How does the this method compare with the off-center derivative? Which
approach is more accurate? How does the error depend on the size of ∆x?
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Hint: You may find it helpful to compare the accuracty of each approch using
two values of ∆x such as 0.1 and 0.01.

3.3 Integration—inverting the derivative

Suppose we know the velocity of an object, how would we determine the posi-
tion? Common sense tells us that we must know more in order to answer that
question: we need to know the objects initial position at some time.

Suppose you know the derivative of a function, how would you find the
function itself? This is particularly relevant in this chapter, as we want to be
able to determine the position of an object based on a knowledge of its velocity.
The general answer is that we must perform an integral in order to compute a
function from its derivative.

A definite integral—which is the only sort that we can perform numerically—
may be defined as: ∫ b

a

f(x) dx ≡ lim
∆x→0

b∑
x=a

f(x)∆x (3.6)

where it is understood that the summation over x values on the right hand side

xx

f(x)

is performed over values of x that differ by ∆x. The integral can also be seen
as giving the area under the curve plotting f(x), as illustrated to the right,
provided it is understood that when the function is negative, it contributes
negative area.

The definition of the integral also clarifies the notation we use for integrals.
The “

∫
” symbol is a stretchesd “S” standing for “summation”. The dx is the

limit of a very small ∆x, just as we saw in the definition of the derivative. As
the derivative describes a change—in other words, a difference—the integral
describes a summation of little changes. Quadrature is the process of

numerically solving a definite
integral.

The definition of an integral in Equation 3.6 immediately suggests an algo-
rithm for numerically computing an integral. We simply need sum over many
points separated by ∆x. And indeed, this is at the heart of any integration
scheme. The details of quadrature methods such as the midpoint method, the
trapezoidal method or Simpson’s rule all come down to approaches for dealing
with the end points, an issue that is irrelevant in the limit as ∆x→ 0.

To get back to the problem of solving for position when we only know the
velocity, the fundamental theorem of calculus states that∫ b

a

dy

dx
dx = y(b)− y(a) (3.7)

This theorem states what we pointed out at the beginning of this section, which
is that if we know the time derivative of the position, we can integrate that
value in order to find the position at any time, provided we know the initial
position.
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3.4 Euler’s method

Euler’s method is a time-honored approach for integrating, which is useful when
we want to compute many integrals of the same function, each with different
bounds.2 Euler’s method is an approach to solve the equation

f(t) = f(0) +

∫ t

0

df(τ)

dτ
dτ (3.8)

for a sequence of values for t, assuming that we can compute df
dt and already

know f(0). Here I’ve chosen to introduce a dummy variable τ for the integra-
tion, in order to distinguish between the time t at which we’re computing the
function f(t) and those intermediate times that will arrise in the summation
that describes the integral.

The simples way to arrive at Euler’s method is to consider the definition of
a derivative:

df

dt
≡ lim

∆t→0

f(t+ ∆t)− f(t)

∆t
, (3.9)

If we pick a small value for ∆t instead of taking the limit, then we can solve
this equation for f(t+ ∆t):

f(t+ ∆t) ≈ f(t) +
df

dt
∆t (3.10)

With this relationship, if we know f(0) we can compute f(∆t) and from that
f(∆t+∆t) and so on. One question that remains is at what time the derivative
df
dt should be evaluated. Euler’s method uses the pragmatic choice of evaluating
the derivative at the earlier time t:

f(t+ ∆t) ≈ f(t) +
df

dt

∣∣∣∣
t

∆t (3.11)

Other options would have been to evaluate the derivative at the later time
t+ ∆t, or at the central time t+ ∆t/2.

How does Euler’s method relate to integration, as defined in Equation 3.6?
The key is to recognize that as we repeatedly apply Equation 3.11, we are
repeatedly summing df

dt∆t—which is precisely the definition of an integral,
in the limit that ∆t is small. So although we motivated Euler’s method by
considering the definition of a derivative, we ended up with an evaluation of
an integral. This is due to the fundamental theorem of calculus.

3.5 Constant velocity

To illustrate the use of Euler’s method, we will first consider the case of a
ball moving with constant velocity. We will begin by creating a box to be the
“ground” in which ball moves.

2Euler’s method also allows the integration of systems of partial differential equations,
but we will leave that application for Chapter 4.
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>>> ground=box(color=color.red)

>>> ground.size = (22,1,2) # meters

>>> ground.pos = vector(0,-1.5,0) # meters

Then we create a sphere with an initial position and velocity. Note that al-
though velocity is not directly supported by sphere objects, python allows us
to assocate any data we wish with any object. We’ll start the ball out on the
left side, and make its velocity be to the right with a speed of 10 meters per
second.

>>> s=sphere()

>>> s.pos = vector(-10,0,0) # meters

>>> s.velocity = vector(10,0,0) # meters per second

Next define an initial time, and a ∆t. It doesn’t greatly matter what value
we pick for ∆t, as long as it is reasonably small. In this case, “small” can be
defined by considering how far the ball will move in one step, which is v∆t.
Since the scene (defined by the ground) is 22 m long, we want to ensure that
v∆t� 22 m, or ∆t� 0.5 s.

>>> t = 0 # seconds

>>> dt = 0.01 # seconds

Finally we reach the actual Euler’s method integration. We need to loop over
t, incrementing by ∆t. We can achieve this with a while loop, very similar to
the loops we used in the last chapter.

>>> while t < 2:

... s.pos = s.pos + s.velocity*dt

... t = t+dt

... rate(1/dt)

As you can see, Euler’s method is actually very simple to implement.

Problem 3.2 Ball in a box I Write code to modify the ball’s motion to
make it bounce around inside a box. This will involve inserting into the while
loop checks to see if the x̂ position of the ball is outside the bounds and whether
its velocity indicates that it is leaving the box. If this happens, you will want
to reverse the sign of the x̂ component of the velocity. You will probably want
to do similarly for the ŷ and ẑ components. Note that you can access the x̂
component of the vector s.velocity as s.velocity.x, and similarly for the
ŷ and ẑ components.

It would be best to use your solution to Problem 2.2, so you can see that
the ball says within the bounts set. If you didn’t solve that problem, you may
use the solution below to draw a box around your bounds.

Problem 3.2 Ball in a box I
>>> xmax=15

>>> ymax=10
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>>> zmax=5

>>> for x in [-xmax,xmax]:

... for y in [-ymax,ymax]:

... cylinder(pos=vector(x, y, -zmax),

... axis=vector(0,0,2*zmax),

... color=color.red)

>>> for x in [-xmax,xmax]:

... for z in [-zmax,zmax]:

... cylinder(pos=vector(x, -ymax, z),

... axis=vector(0,2*ymax,0),

... color=color.red)

>>> for y in [-ymax,ymax]:

... for z in [-zmax,zmax]:

... cylinder(pos=vector(-xmax, y, z),

... axis=vector(2*xmax,0,0),

... color=color.red)

Problem 3.3 Circular motion revisited In Section 2.5, we made a ball
move in a circular by setting its position according to Equation 2.16. Create
this same motion by using Euler’s method to integrate the velocity, which you
can determine by taking the derivative of r(t). Note: to take a derivative of a
vector-valued function such as r(t), you can simply take a derivative of each of
the components of r individually.

Figure 3.1: Problem 3.3 Circular motion revisited

Problem 3.4 Figure eight revisited Work out a velocity v(t) which will
lead to motion in a figure-eight pattern (as illustrated in Problem 2.4), and
program this motion using Euler’s method.

Problem 3.5 Guided missiles Consider four missiles initially located at
the four corners of a square with a side of 100m. Model their behavior if each
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missle moves with a speed of 5m/s in the direction pointing directly at the
missile counter-clockwise from itself.

Problem 3.5 Guided missiles





4 Acceleration and
forces—kinematics and dynamics

4.1 A second derivative

The acceleration is defined as the rate of change of velocity

a =
dv

dt
(4.1)

From this definition, you can see that the SI units for acceleration are m/s2.
As we shall see (in Section 4.3), the acceleration is directly related to the forces
acting on an object, and as such plays a central role in Newtonian mechanics.

You can feel acceleration acting upon you as if it were a change in the
gravitational force. When you go into free fall on a roller-coaster, you feel
weightless, as if there were no gravitational force. Similarly, when a car turns
at high speed—which involves acceleration, since the velocity is changing—
you feel a force to the side. The term G-force is a measure of acceleration,
measured relative to the acceleration that gravity induces on objects in free
fall. An object in free fall near the Earth’s surface accelerates downward at a
rate of g = 9.8 m/s2.

From the definition of velocity, we can see that the acceleration is the second
derivative of position:

a =
d2r

dt2
(4.2)

How do we solve for the position r, knowing the acceleration? Since a second
derivative is a derivative of a derivative, one obvious idea would be to take
an integral of an integral. This will be our first approach, which is still called
Euler’s method.

4.2 Euler’s method revisited

In Section 3.4, we learned to use Euler’s method to integrate the velocity v in
order to find the position r. Evidently, we can use the same approach to find
the velocity from the acceleration a, and then proceed as before to compute
the position from the velocity. The key is that using Euler’s method, these

25
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two integrations can be performed simultaneously, with a minimum of extra
book-keeping.

Here we are solving two coupled differential equations

dr(t)

dt
= v(t) (4.3)

dv(t)

dt
= a(t) (4.4)

Applying Equation 3.11 to each of these gives us two coupled equations

v(t+ ∆t) ≈ v(t) + a(t)∆t (4.5)

r(t+ ∆t) ≈ r(t) + v(t)∆t (4.6)

which we can implement using much the same code as we used in the last
chapter.

Problem 4.1 Baseball I To make things interesting, we will implement
Euler’s method under constant acceleration using baseball pitching as an ex-
ample. I’ll set up the parameters in the code below (dimensions of the field,
height of pitcher, etc), and you write the code to propagate the ball. Note: if
you include a trail.append(ball.pos) in your while loop, the ball will leave
a trail behind, so you can see its trajectory after it has passed.

>>> dirt = (1,0.6,0.4) # (red,green,blue)

>>>

>>> ground=box(color=dirt)

>>> ground.axis = vector(1,0,1) # diamond orientation

>>> ground.size = (0.305*120/sqrt(2),0.305*1,0.305*120/sqrt(2)) # meters

>>> ground.pos = 0.305*vector(0,-0.5,0) # meters

>>>

>>> mound=cone(color=dirt)

>>> mound.axis= 0.305*vector(0,10/12,0) # meters

>>> mound.radius = 0.305*9 # meters

>>>

>>> pitcher=cylinder(color=color.red)

>>> pitcher.pos = 0.305*vector(0,10/12,0)

>>> pitcher.axis = 0.305*vector(0,6,0)

>>> pitcher.radius = 0.305*0.8

>>>

>>> # use a large home plate for visibility

>>> plate=box(color=color.yellow)

>>> plate.size = (1,0.1,1) # meters

>>> plate.pos = 0.305*vector(60.5,0,0) # meters

>>>

>>> strikezone = box(color=color.red)
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>>> strikezone.size = (0.305/12,0.305*2,0.305*2) # meters

>>> strikezone.pos = 0.305*vector(60.5,2.5,0) # meters

>>>

>>> ball=sphere()

>>> # The pitcher’s mound is 60’6" from home plate, and 10" high.

>>> # We assume the pitcher pitches from 5’ above the mound

>>> ball.pos = 0.305*vector(0, 5+10/12, 0)# meters

>>> # 80 mph is the speed of an average MLB pitch

>>> ball.velocity = 0.447*vector(80,0,0) # meters per second

>>> ball.radius = 0.305*1.45/12 # meters

>>>

>>> # The ball moves pretty fast, so let’s leave a trail, so

>>> # we can see if we hit the strike zone:

>>> trail = curve(color=color.blue, pos=ball.pos)

Figure 4.1: Problem 4.1 Baseball I

At what angle does the pitcher need to throw the ball in order to make it pass
through the strike zone?

Problem 4.2 Umpire Modify your baseball program above to check whether
the pitch was a strike or a ball based on whether it passes through the strike
zone. In the case of a strike, turn the strikezone green.

Figure 4.2: Problem 4.2 Umpire

Problem 4.3 Ball in a box II Repeat Problem 3.2, but with gravity in-
cluded. Try different starting velocities and starting positions, and look for
patterns that emerge. What do you need to do to keep the ball from ever
hitting the top of the box?

Problem 4.3 Ball in a box II
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4.3 Newton’s first and second laws

Newton’s first law states that an object in motion tends to remain in motion,
and an object at rest remains at rest, in the absence of any force upon that
object. This law is clearly true only in certain reference frames, called inertial
reference frames. In an accelerating or rotating reference frame, even objects
that have no force exerted on them will appear to be changing velocity.

Newton’s second law states that the acceleration of an object in an inertial
reference frame is equal to the total force on that object divided by its mass.
Mathematically, we write this as

F = ma (4.7)

Note that the second law—in one sense—encompasses the first law, since when
F = 0, it means that dv

dt = 0, which means the velocity is constant.
Note that Newton’s second law is only approximate, as it neglects effects of

relativity, which become significant when speeds approach the speed of light,
299,792,458 m/s. Fortunately, this is a rather high speed, and there are many
problems that we can deal with quite effectively using Newtonian mechanics.

Problem 4.4 Circular motion Consider the problem of circular motion
you treated in Problem 3.3, in which you computed the velocity corresponding
to the motion described in Equation 2.16. You now know r(t) and v(t).

a. Take a derivative to find the acceleration a(t).

b. How does the magnitude of the acceleration relate to the magnitude of
the speed? Give an explicit mathematical formula for the magnitude of
the acceleration as a function of the radius and speed. This acceleration
is called the centripetal acceleration.

c. What is the force needed—specify both magnitude and direction—in or-
der to maintain circular motion? This force is called the centripetal force.

d. What is the angle between the force and the velocity? You can compute
this using the relation a · b = |a||b| cos θ.

Now put the acceleration you’ve calculated into your Euler’s method integrator,
and check that the ball does indeed travel in a circle.

4.4 Magnetism, cross products and Lorentz force law

In the last problem, you solved for a force, given circular motion. How about
the other way, what sorts of forces might lead to circular motion?

One interesting force that can lead to circular motion is the force a magnetic
field exerts on a charged particle. This force is governed by the Lorentz force
law

F = qv ×B (4.8)
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Figure 4.3: Problem 4.4 Circular motion

Recall that the cross product two vectors produces a third vector that is or-
thogonal (i.e. perpendicular) to each of them. This has can result in circular
motion, since as we saw in Problem 4.4, circular motion involves a force at
right angles to the velocity.

>>> B = vector(0,0,0.5e-4) # Tesla, the earth’s magnetic field

>>> q = -1.6e-19 # Coulomb, the charge on an electron

>>> m = 9e-31 # kg, the mass of an electron

>>>

>>> s = sphere(radius=2.0e-6)

>>> s.velocity = vector(100,0,0) # m/s

>>> trail=curve(color=color.blue,pos=s.pos)

>>>

>>> t=0

>>> dt=1e-8 # s

>>> while t < 3e-6:

... s.acceleration = q*cross(s.velocity,B)/m

... s.velocity = s.velocity + s.acceleration*dt

... s.pos = s.pos + s.velocity*dt

... trail.append(s.pos)

... t = t+dt

... rate(4e-7/dt)

This doesn’t quite look like circular motion. Something is obviously wrong
here. The problem is that our value of ∆t is too large. If we decrease ∆t to a
considerably smaller value, we get much better behavior.

>>> dt=1e-10 # s (use a smaller value for dt)

Note that although we have apparently solved this problem by decreasing the
step size, in reality we have only reduced its magnitude. The ball is still
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spiraling, just very slowly. A true solution will involve using the Verlet method
(see Section 6.2) to eliminate this systematic error entirely.

>>> dt=1e-10 # s (use a smaller value for dt)

The Lorentz force law does not always lead to circular motion. With different
initial conditions, one can observe helical motion, as shown in the margin.

Problem 4.5 The cyclotron frequency Using the Lorentz force law to-
gether with the relationship between centripetal force, speed and radius (see
Problem 4.4), analytically compute the frequency of an electron in a uniform
magnetic field, as discussed in Section 4.8.

Work out the mass a particle with the electron’s charge must have in order
to have a cyclotron frequency of 1Hz. What velocity must this particle have in
order for the radius of its motion to be 10m? Verify by numerical simulation
that this answer is correct.

Problem 4.6 Modelling a cyclotron The cyclotron was an early form
of particle accelerator that relied on placing charged particles in a confining
magnetic field and introducing a periodic electric field to accelerate them. You
will model a cyclotron with a very simple interaction. We will arrange that the
electron feels a force

F = 1.6× 10−22 cos(ωct)x̂ Newtons (4.9)

whenever the x̂ component of its position has a magnitude less than 1 µm.
Here ωc is the cyclotron frequency computed in Problem 4.5. What happens if
you use twice the cyclotron frequency? Some other value?

Figure 4.4: Problem 4.6 Modelling a cyclotron



5 Friction—it’s always present

Friction and viscous forces are always present to some degree in any mechanical
experiment1, but it’s seldom treated, largely because it complicates analytical
computations. Fortunately, in numerical simulations viscous forces present no
particular difficulty.

5.1 Air friction—viscous fluids

The behavior of the viscous force will depend on the velocity, size, shape and
materials of an object, as well as the intrinsic properties of the fluid. This com-
plexity is another reason viscous forces are often neglected: it’s not a problem
that lends itself to simple equations.

Fortunately, the viscous force on a spherical object moving slowly in any
fluid2 will be

F = −mγv (5.1)

where m is the mass, and I have defined a new constant γ, which clearly has
units of s−1. The parameter γ here can be thought of (crudely) as a decay rate
for the speed. In fact, the solution to Newton’s Second Law when viscous drag
is the only force is simply

v(t) == v(0)e−γt (5.2)

We can also connect γ with intuition by considering the question of terminal
velocity when in free fall. We have reached terminal velocity when the velocity
becomes constant, which means that the net force must be zero. The net force
of an object under viscous drag in gravity is

F = mg −mγv (5.3)

where g is the vector acceleration due to gravity. When we set the net force to
zero, the velocity becomes the terminal velocity and we can solve for it.

vterminal =
g

γ
(5.4)

1We understand this as a result of the Second Law of Thermodynamics
2This is a universal property that can be understood through a consideration of the

Taylor expansion of the viscous force, which for moderate speeds is a well-behaved function
of the speed. For sufficiently small speed, the first—linear—term in the expansion must
dominate.
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from which we can see that the terminal speed is just g/γ.

Problem 5.1 Ball in a viscous box Add viscous drag to the ball in a box
with gravity from Problem 4.3.

Figure 5.1: Problem 5.1 Ball in a viscous box

Problem 5.2 Baseball II Add viscosity to the baseball problem, starting
with your solution to Problem 4.1. Use Equation 5.1 with a value of γ cor-
responding to a terminal speed for the baseball of 50 m/s. Note that this is
a poor approximation, as a fastball can hardly be described as moving slowly
through the air.

Figure 5.2: Problem 5.2 Baseball II

5.2 Air drag at high speeds

The viscous force described in the previous section is correct for objects mov-
ing at low speeds, but what happens when objects start moving faster? Nat-
urally, the higher powers in the speed will begin to dominate. For ordinary-
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sized objects3 in air—which isn’t very viscous—the drag force is approximately
quadratic.

Fdrag = −1

2
CdρA |v|v (5.6)

where A is the cross-sectional area, ρ is the fluid density, and Cd is a unitless
constant relating to the object’s shape and surface properties, which we will
take to be one.

Given Equation 5.6, we can compute the terminal velocity of an object
falling in air, as we did in Section 5.1. By setting the net force due to gravity
plus the drag force to zero, we obtain

vterminal =

√
2mg

CdρA
(5.7)

Problem 5.3 Terminal velocity of a human Given that the density of
air is 1.2 kg/m3 and using Cd ≈ 1, estimate your terminal speed in air. One
mph is 0.447 m/s.

Problem 5.4 Baseball III Modify your solution to Problem 5.2 to use the
more realistic drag force from Equation 5.6 which is quadratic in the speed of
the baseball. The mass of a baseball is 145 g.

Figure 5.3: Problem 5.4 Baseball III

At what angle does the pitcher need to throw the ball in order to hit the
strike zone?

Problem 5.5 Bremsstrahlung Below is an image from a bubble chamber,
which shows the tracks left by electron-positron pairs that are created. The
bubble chamber is placed in a magnetic field, and the electrons and positrons
both lose energy continuously due to bremsstrahlung (“braking radiation”).
Try modelling an electron in a magnetic field with a viscous force, and see if
you can predict by comparing your results with those in the image whether the

3Technically, the distinction is in the Reynolds number , which is a measure of the effective
viscosity in a fluid.

R =
vL

ν
(5.5)

where v is the speed at which an object is moving relative to the fluid, L is its linear dimension,
and ν is the kinematic viscosity, which has units of m2/s. The kinematic viscosity of water
is 1× 10−6mm2/s, while that of air is about 1.5×10−5 m2/s. In practice The linear viscous
drag from Section 5.1 is really more relevant for ordinary objects in water, or tiny objects
(such as dust or insects) in air.
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bremsstrahlung force is proportional to the speed or the square of the speed.

Problem 5.5 Bremsstrahlung

Problem 5.6 Wind Try changing your baseball solution from Problem 5.4
to include a cross-wind of 5 miles per hour. Does the pitch still hit the strike
zone? What speed does the wind need to be in order for a pitch that starts
out aimed directly at home plate to be a ball?

Figure 5.4: Problem 5.6 Wind

Problem 5.7 Thermostat Implement a Langevin thermostat , which is a
technique in molecular dynamics for modeling objects in contact with a thermal
reservoir. The Langevin thermostat involves the introduction of a fictitious
fluid that weakly interacts with your objects. The result is that there is a
viscous drag, as well as some Brownian motion. The interaction takes the
form of a force such as

FLangevin =

√
2γmkBT

∆t
R(t)− γmv (5.8)

where T is the temperature, kB is Boltzmann’s constant, γ is a parameter
defining the strength of the thermostat interaction, and R(t) is a vector that
changes direction every ∆t with a random gaussian (normal) distribution and
variance one. This is an unusual situation, where the magnitude of the random
force depends on ∆t, which is an arbitrarily chosen small time step. This is
actually correct because of the properties of a random walk.
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In python, you can obtain a random number with normal distribution, zero
mean and unit variance by using

>>> import random

>>> print(random.gauss(0,1))

>>> def randomVector():

... return (vector(random.gauss(0,1),

... random.gauss(0,1),

... random.gauss(0,1)))

Implement this thermostat by modifying your ball-in-a-box from Prob-
lem 5.1. How high does the temperature need to be set to cause the ball
to reach the top of the box?

Figure 5.5: Problem 5.7 Thermostat





6 Energy conservation

Conservation of energy is a fundamental law of physics that states that the total
amount of energy in an isolated system remains constant. In other words, if
one sort of energy is lost, the same amount of energy must have been gained
elsewhere. The simplest sort of energy is kinetic energy ,1 which can be defined
for a point particle (or non-rotating rigid object) as

T =
1

2
mv2 (6.1)

It should be immediately clear that the kinetic energy alone is not conserved,
since a ball that is dropped begins with no kinetic energy, and later gains
kinetic energy. Energy conservation is obeyed, however, because the ball is
losing potential energy . The potential energy V due to a uniform gravitational
field g is given by

V = −mg · r + constant (6.2)

The potential energy is only defined up to an arbitrary constant. This physi-
cally relates to its derivation as an integral of the force.

6.1 Energy conservation in a gravitational field

Consider the ball in a box with gravity solved in Problem 4.3. Let’s check that
energy is conserved in this problem.

>>> from visual.graph import * # import graphing features

>>>

>>> gdisplay(xtitle=’time (s)’, ytitle=’Energy (J)’,

... foreground=color.black, background=color.white)

>>> energy = gcurve()

>>> potential = gcurve(color=color.blue)

>>> kinetic = gcurve(color=color.red)

>>>

>>> # skpping various initializations

>>> m = 2 # kg

>>> g = vector(0,-9.8,0) # m/s^2

1The conventional symbol for kinetic energy is T .
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>>> while t < 10:

... # ...

... # skipping solution to earlier homework problem

... # ...

... kineticEnergy = 0.5*m*dot(s.velocity,s.velocity)

... potentialEnergy = -m*dot(g,s.pos+ymax*vector(0,1,0))

... kinetic.plot(pos=(t,kineticEnergy))

... potential.plot(pos=(t,potentialEnergy))

... energy.plot(pos=(t,kineticEnergy + potentialEnergy))

... t = t+dt

... rate(1/dt)

Problem 6.1 Energy conservation in a magnetic field Plot the energy
as a function of time for a 0.1 kg object with a charge of 0.2 C (which is a
huge charge) moving in a magnetic field of 1 T (which is a huge magnetic field)
under the influence of gravity.

>>> B = vector(0,0,1) # Tesla

>>> q = 0.2 # Coulomb

>>> m = 0.1 # kg

>>> g = 9.8*vector(0,-1,0) # m/s**2

Play with different initial velocities and positions. Is energy conserved in this
system? What kinds of trajectories can you create?

6.2 Verlet’s method

We are forced to use a very small ∆t in order to achieve energy conservation
in our calculations. Failure to use an adequately small ∆t when using Euler’s
method leads to a lack of energy conservation, as illustrated in the margin. This
is a failing of Euler’s method, and relates to our use of a forward derivative in
deriving Euler’s method. A nicer approach is Verlet’s method , which involves
the use of centered derivatives only by directly integrating the second-order
differential equation that is Newton’s second law.

ma = F (6.3)

d2r

dt2
=

F

m
(6.4)

By applying twice the centered definition of a first derivative (see Equation 3.4),
we obtain the following description of the second derivative

d2r

dt2
= lim

∆t→0

r(t+ ∆t) + r(t−∆t)− 2r(t)

∆t2
(6.5)
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If we set this equal to F/m and solve for r(t+ ∆t), we arrive at

r(t+ ∆t) = 2r(t)− r(t−∆t) +
∆t2

m
F (6.6)

To begin, let’s implement our ball in a box with gravity using Verlet’s method.

>>> dt = 0.1 # seconds

>>> s.oldpos = vector(0,0,0) # m

>>> s.pos = s.oldpos + vector(5,8,1)*dt

>>> m = 2 # kg

>>> g = vector(0,-9.8,0) # m/s^2

>>> while t < 10:

... # the verlet integration:

... s.force = m*g

... olderpos = s.oldpos

... s.oldpos = 1*s.pos

... s.pos = 2*s.pos - olderpos + s.force*dt**2/m

... # work out the energy using a centered derivative

... # for the velocity:

... velocity = (s.pos - olderpos)/(2*dt)

... kineticEnergy = 0.5*m*dot(velocity,velocity)

... potentialEnergy = -m*dot(g,s.oldpos+ymax*vector(0,1,0))

... print(kineticEnergy + potentialEnergy)

... # Now let’s keep the ball in the box:

... if s.pos.x > xmax or s.pos.x < -xmax:

... s.pos.x, s.oldpos.x = s.oldpos.x, s.pos.x

... if s.pos.y > ymax or s.pos.y < -ymax:

... s.pos.y, s.oldpos.y = s.oldpos.y, s.pos.y

... if s.pos.z > zmax or s.pos.z < -zmax:

... s.pos.z, s.oldpos.z = s.oldpos.z, s.pos.z

... t = t+dt

... rate(1/dt)

As you can see, we now have extremely accurate energy conservation, even
though we are using an extremely large value for ∆t. This is one of the primary
reasons why Verlet is so very popular among computational physicists, and is
a result of the use of the unbiased centered derivative in its derivation.

6.3 Energy conservation in presence of friction

There are more forms of energy than kinetic and potential energy. One of the
most common forms is thermal energy . Thermal energy is composed of kinetic
and potential energy on an atomic scale. There is not much we will say in
this course about thermal energy, except that it is usually where energy that
is “lost” due to friction ends up. Given that we know so little about thermal
energy, what can we do to ensure that our energy remains conserved? The key
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is in the definition of work . Work is a measure of the transfer of energy, and
in general is defined by

W =

∫
F · dr (6.7)

which tells us that in order to determine the work, if we know the force and
r(t), we must perform a line integral . Line integrals are not particularly scary,
but we can make this even simpler if we consider the power , which is the rate
at which work is done.

P = F · dr
dt

(6.8)

= F · v (6.9)

So for a simple linear viscosity as described in , we can now work out the energy
lost to heat in a time ∆t, which is just

∆W = P∆t (6.10)

= F · v∆t (6.11)

Problem 6.2 Energy of a ball
in a viscous box

Problem 6.2 Energy of a ball in a viscous box Check the energy conser-
vation of your solution to Problem 5.1, taking into account the energy lost to
friction. Try this check with a range of values for ∆t. How small does ∆t need
to be to give reasonable energy conservation? Is the answer to this question
affected by how long you run the simulation?

Problem 6.3 Verlet with viscosity Derive (on paper!) an update equation
using Verlet’s method for a ball in a viscous fluid that is subjected to an
arbitrary external force ~Fexternal(t). You will need to write the analogue of
Equation 6.6 including a viscous force explicitly as a centered derivative as
well as ~Fexternal(t). Keep in mind that the viscous force is

~Fviscous(t) = −mγ~v(t) (6.12)

Recall that the centered formula for a second derivative is

d2y

dx2
= lim

∆x→0

y(x+ ∆x) + y(x−∆x)− 2y(x)

∆x2
(6.13)

Show your work!
Note: ~v should not appear in your final answer

Problem 6.4 Ball in a viscous box using Verlet’s method Solve Prob-
lem 5.1 using Verlet’s method instead of Euler’s method. In order to deal
with the viscous drag term, you will need the results of Problem 6.3, which is
the analogue of Equation 6.6 including the viscous drag term explicitly as a
centered derivative.

Check that energy is now conserved if you take into account the energy
lost to friction. Try this check with a wide range of values for ∆t. How well
is energy conserved, even for values of ∆t that are not small, or long running
times?

Problem 6.4 Ball in a viscous
box using Verlet’s method



7 Hooke’s law—springs

7.1 Hooke’s law

Hooke’s law states that the restoring force exerted by a spring is proportional
to its displacement from equilibrium.

F = −k∆r (7.1)

where the constant k is the spring constant . Hooke’s law actually applies to
considerably more than just mechanical springs, because any system with a
stable equilibrium will respond to small deviations according to Hooke’s law—
although in general there may be different spring constants in different direc-
tions.

7.2 Motion of a spring

Let us attach a sphere to the origin with a simple spring. The code will be
identical to code we’ve seen many times, only with a new law for the force.

>>> m = 2 # kg

>>> k = 4 # N/m

>>>

>>> t=0

>>> dt=0.01 # s

>>>

>>> s=sphere()

>>> spring = helix(radius=0.6, thickness=0.3)

>>> s.pos = vector(10,0,0) # m

>>> s.oldpos = s.pos - vector(0,0,0)*dt # m

>>>

>>> while t < 0.5*pi:

... s.force = -k*s.pos

... s.pos, s.oldpos = \

... 2*s.pos - s.oldpos + s.force*dt*dt/m, 1*s.pos

... spring.axis = s.pos - spring.pos

... t = t+dt

... rate(1/dt)
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As you can see, the motion is sinusoidal. Having observed this, we can compute
the frequency by considering Newton’s second law

F = ma, and from Hooke’s law (7.2)

−kr = m
d2r

dt2
(7.3)

If we insert r(t) = r(0) cos(ωt) into the above equation, we obtain

−kr(0) cos(ωt) = −mω2r(0) cos(ωt) (7.4)

ω =

√
k

m
(7.5)

7.3 Energy in a spring

The energy stored in a spring can be computed in the same way that we
computed the energy lost to heat, by integrating the force to find the work.
However, because the force due to a spring is a function of position only, we
can do this analytically.

W =

∫
F · dr (7.6)

= −k
∫

r · dr (7.7)

= −1

2
kr · r (7.8)

= −1

2
kr2 (7.9)

We’ve got a little confusion here, because of the ambiguity between the work
done by the spring and the work done on the spring, which are opposite in sign.
Nevertheless, the potential energy stored in a spring is quite easy to compute,
and comes out to simply

V =
1

2
kr2 (7.10)

We can now write a quick program to verify the conservation of energy in our
spring:

>>> while t < 0.5*pi:

... s.force = -k*s.pos

... olderpos = s.oldpos # save oldpos for the the velocity

... s.pos, s.oldpos = \

... 2*s.pos-s.oldpos+s.force*dt*dt/m, 1*s.pos

... velocity = (s.pos - olderpos)/(2*dt)

... kineticEnergy = 0.5*m*dot(velocity,velocity)

... potentialEnergy = 0.5*k*dot(s.oldpos,s.oldpos)

... kinetic.plot(pos=(t,kineticEnergy))
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... potential.plot(pos=(t,potentialEnergy))

... energy.plot(pos=(t,kineticEnergy + potentialEnergy))

As you can see, the energy alternates sinusoidally between kinetic and potential
energy.

Problem 7.1 Damped oscillations Simulate a ball on a spring, moving
with a viscous damping term γ, keeping the mass at 2 kg and the spring con-
stant at 4 N/m. Solve this problem using Verlet’s method, as in Problem 6.4,
and plot the kinetic, potential, thermal and total energy versus time for the
damped oscillator as you did in that problem. By changing the value γ you
can make the spring either over damped , under damped or critically damped .
Experiment a bit and see if you can find these regimes. What values of γ do
they correspond to?

Figure 7.1: Problem 7.1 Damped oscillations

Would you like the shock absorbers in your car to be over damped, under
damped or critically damped?

Problem 7.2 Driven, damped oscillations Implement a driven damped
oscillator by adding to the solution to the previous problem an additional
external force

F = fmax sin(ωt) (7.11)

where you may take fmax to be 2 Newtons. Be sure to run the simulation for at
least ten periods (or at least 1/γ, if γ is small). The motion should eventually
fall into a steady state.

How does the motion change when you change the driving frequency ω?
What is the effect of changing the damping γ? The frequency that leads to the
maximum amplitude of motion is termed the resonant frequency .

Figure 7.2: Problem 7.2 Driven, damped oscillations
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For extra fun: Plot the kinetic, potential, thermal and total energy versus
time for the driven damped oscillator. What happens to the total energy?
Why?

For extra fun: Use the Verlet method.

Problem 7.3 Spring pendulum Model a real spring with equilibrium length
L = 10 m, under the influence of gravity. The spring’s equilibrium length is
defined as the length at which the force exerted by the spring is zero. Deter-
mining the magnitude and direction of the force will be a bit trickier in this
case, since the formulas in the text only describe springs with an equilibrium
length of zero. Solve this problem both using the Verlet method, and using
Euler’s method.

Plot each component of the energy—keeping separate account of gravita-
tional and spring potential energy—as well as the total energy. How would you
set the initial conditions such that the potential energy stored in the spring is
constant?

How does the behavior of this spring pendulum change when you increase
the spring constant k? If you have extra time, try adding in damping and/or
a periodic driving force.

Figure 7.3: Problem 7.3 Spring pendulum



8 Newton’s third law

So far, we’ve only considered a single object, which is quite a simplification.
Once we have multiple objects, we need to consider forces that they exert
on each other. Newton’s third law states that if one object exerts a force on
another, the second object must exert an equal and opposite force on the first.
This law is really all we need in order to start working on multiple objects.

8.1 Spring dumbell

Let us consider the problem of two balls connected by a spring with an equi-
librium length l. The force on one ball will is given by Hooke’s law, which now
looks a little different since our spring has a non-zero equilibrium length:

F1 = −k(|r1 − r2| − l)
r1 − r2

|r1 − r2|
(8.1)

By Newton’s third law, the force the second ball will be equal in magnitude
and opposite in the direction of the force on the first ball.

l
r1

r2

r1 r2-

>>> L = 10 # m

>>> m = 2 # kg

>>> k = 4 # N/m

>>>
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>>> t=0

>>> dt=0.001 # s

>>>

>>> s1=sphere(pos=vector(8,-3,0)) # m

>>> s2=sphere(pos=vector(0,0,0), color=color.red)

>>> spring = helix(radius=0.6, thickness=0.3)

>>> s1.oldpos = s1.pos - dt*vector(-3,-2,1)

>>> s2.oldpos = s2.pos - dt*vector(3,2,1)

>>>

>>> while t < 6:

... dr = s1.pos - s2.pos

... s1.force = -k*(abs(dr) - L)*dr/abs(dr)

... s2.force = -s1.force

... s1.pos, s1.oldpos = \

... 2*s1.pos - s1.oldpos + s1.force*dt*dt/m, 1*s1.pos

... s2.pos, s2.oldpos = \

... 2*s2.pos - s2.oldpos + s2.force*dt*dt/m, 1*s2.pos

... spring.pos = s2.pos

... spring.axis = s1.pos - s2.pos

... t = t+dt

... rate(1/dt)

Problem 8.1 Energy conservation with two particles The potential
energy stored in the spring is determined by the distance between the two balls

V =
1

2
k (|r1 − rr| − L)

2
(8.2)

and now we have two kinetic energies to compute. Verify energy conservation
in this system, plotting separately each of the two kinetic energies. You will
observe that if the velocities of the two balls are not equal and opposite, the
kinetic energy has a somewhat irregular behavior.

Problem 8.1 Energy conserva-
tion with two particles Problem 8.2 Dumbell in a box Put the two masses connected by a spring

which we modelled in Section 8.1 into a box with hard walls, and give the balls
an initial velocity so that they bounce off the walls. Then check that energy is
conserved in this system.

Problem 8.2 Dumbell in a box

Problem 8.3 Double pendulum Consider the problem of two 2 kg masses
forming a chain held together by a spring in the presence of gravity, but with
one of the two masses attached by a second spring to a fixed point as illustrated
in the accompanying figure. Model this double pendulum using the parameters
defined below.

>>> L = 10 # m

>>> m = 2 # kg
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>>> k = 10 # N/m

>>> g = vector(0,-9.8,0) # m/s^2

Problem 8.3 Double pendu-
lum

Can you find initial conditions that lead to periodic motion? Bonus: check
that conservation of energy for your solution.

8.2 Momentum conservation

Newton’s third law tells us that when there are two objects that are interacting
only with each other, the force on one must be exactly opposite to the force on
the other. Newton’s second law informs us that

F = m
dv

dt
(8.3)

which we can combine with Newton’s third law, to obtain a relation between
the velocities of the two objects:

F1 = −F2 (8.4)

m1
dv1

dt
= −m2

dv2

dt
(8.5)

We can then move everything to one side, to obtain

d

dt
(m1v1 +m2v2) = 0 (8.6)

which tells us that the combination of quantities m1v1 +m2v2 is independent
of time—i.e. is conserved. This quantity is what we call the total momentum
ptot. The momentum of just one object is m1v1.1 Momentum is conventionally
written as p.

Problem 8.4 Collisions A commonly used approximation to the repulsive
interaction between two atoms is

F1 = k
r1 − r2

|r1 − r2|13 (8.7)

Implement this interaction for two balls with the following parameters, and
check whether the total momentum is indeed independent of time.

>>> m1 = 2 # kg

>>> m2 = 1 # kg

>>> k = 10 # N/m^12

>>>

... # see whether the total momentum changes

... print("Momentum is:" + str(momentum1 + momentum2))
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Figure 8.1: Problem 8.4 Collisions

Try using different masses and different initial velocities. Does momentum
remain conserved? What happens if you increase the time step ∆t to an un-
reasonably large value?

Problem 8.5 Normal modes—coupled springs Now let’s consider three
balls connected by springs, as shown in the figure, where l given below is the
equilibrium length of each spring, and k is the spring constant. Let the initial
velocity of each ball be zero, and try using initial positions such that the three
balls are not each separated by a distance l.

>>> L = 10 # m

>>> m = 2 # kg

>>> k = 1 # N/m

... # see whether the total momentum changes

... print("Momentum is:" + str(momentum1 + momentum2 + momentum3))

Problem 8.5 Normal modes—
coupled springs

Is momentum conserved in this system? Does your answer change if you give
the balls some asymmetrical initial velocity?

What initial positions can you find that lead to simple periodic motion?
This different motions—which have a distinct frequency—is called a normal
mode. How many normal modes can you find? It may help to consider the
symmetry of this problem.

Problem 8.6 Dumbell in a box with gravity Let’s add gravity to the
dumbell in a box we modelled in Problem 8.2. Now check for conservation of
both energy and momentum. Which is conserved? Why or why not?

Problem 8.6 Dumbell in a box
with gravity

1Special relativity changes our understanding of momentum somewhat. It remains true
that F = dp

dt
, but we can no longer simply state that p = mv. In reality, the momentum

becomes infinite as an object’s speed approaches the speed of light, with the exception being
a particle with zero rest mass, which must always travel at the speed of light.



9 Inverse square law—gravity

So far, we have assumed that the gravitational force is a constant mg. Near
the surface of the earth, this is quite a good approximation, but it is indeed
only an approximation. The gravitational force between two spherical bodies1

is actually

F = Gm1m2
r1 − r2

|r1 − r2|3
(9.1)

where the gravitational constant G is 6.67300×10−11 Nm2/kg2. You may think
at first glance that this doesn’t look much like an inverse square law since the
exponent in the denominator is three. However, the magnitude of the force
goes as the inverse of the square of the distance between the two objects.

Problem 9.1 Length of the year This is a paper and pencil problem. The
earth is 149.6× 109 m from the sun. The mass of the sun is 1.99× 1030 kg and
the mass of the earth is 5.97 × 1024 kg. From this data, assuming the earth
moves in a circular orbit, work out the length of the year using centripetal
acceleration from the results of Problem 4.4. What is the speed of the earth?

9.1 Planetary motion

Let’s now simulate the motion of the earth around the sun. We’ll use the verlet
approach.

>>> m_e = 5.97e24 # kg

>>> m_s = 1.99e30 # kg

>>> G = 6.67300e-11 # Nm^2/kg^2

>>> au = 149.6e9 # m

>>> year = 31556926 # s

>>>

>>> sun=sphere(radius = 0.1*au)

>>> earth=sphere(radius = 0.05*au)

1This formula is also accurate for non-spherical bodies, provided their dimensions are
much smaller than the distance between the two bodies. Corrections to this equation are
generally called “tidal forces,” and relate to the effect that causes the tides, and caused the
moon to rotate in sync with its revolution around the earth so we always see the same side
of the moon.
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>>> #earth.v0 = ??? m/s

>>> earth.r = vector(au,0,0)

>>> earth.rold = earth.r - dt*earth.v0

>>> sun.r = vector(0,0,0)

>>> sun.rold = sun.r

>>>

>>> while t <= year:

... r = sun.r - earth.r

... f = G*m_s*m_e*r/abs(r)**3

... earth.force = f

... sun.force = -f

... earth.r, earth.rold = \

... 2*earth.r-earth.rold+earth.force*dt*dt/m_e, earth.r

... sun.r, sun.rold = \

... 2*sun.r-sun.rold+sun.force*dt*dt/m_s, sun.r

... earth.pos = earth.r

... sun.pos = sun.r

... t = t+dt

9.2 Gravitational energy

In Section 6 we used a potential energy of

V = −mg · r (9.2)

for gravity, which is a good approximation for positions close to the Earth’s
surface. How does this change when the gravitational force is taken as an
inverse square law? We can obtain the answer by integrating the force over
distance to find the work that it does. When we do this, we find that the
potential energy of two spherical bodies is

V = − Gm1m2

|r1 − r2|
(9.3)

Problem 9.2 Energy conservation VI Check that energy is conserved
when the Earth travels around the Sun. Perturb the Earth’s orbit, and verify
that energy is still conserved.

Problem 9.3 Throw in the moon Add the moon to the simulation of the
solar system. Look up the relevant quantities on wikipedia or elsewhere on the
web. Try making the spheres for the sun, moon and earth be to scale. Doing
so will most likely require that you place the camera near the earth using code
such as:

... scene.center = earth.r

Problem 9.3 Throw in the
moon



A Navigating in the unix shell

This is a short appendix on the subject of getting around the bash shell, which
is used on most unix-like operating systems. Learning to use the command-
line interface can be a rewarding and addictive experience. This introduction
is organized so that you can read through it sequentially, working through the
examples as you go, and gain a good working knowledge of the bash shell.
Sections are also titled in order to make it this section useful as a reference.

A.1 echo

The simplest unix command is echo, which simply repeats its arguments.

$ echo Hello world.

Hello world.

This doesn’t sound very interesting just yet, but you will find it suprisingly
useful, particularly when you find some other command behaving in a suprising
way. For instance, try running

$ echo ~

/home/droundy

What happened? It seems like echo is not behaving as advertised, but what
really happened is that the shell itself translated the ‘~’ into the location of
your home directory. Your home directory is the directory you are in when you
first log into your computer.

A.2 pwd (Print Working Directory)

pwd displays the current working directory:

$ pwd

/home/droundy

On POSIX (unix-like) systems—which includes MacOS X—directories (also
known as folders) are separated by the ‘/’ character rather than the ‘\’ char-
acter used on Windows systems.

I am currently in the directory /home/droundy, which is my home directory,
as we expect from our previous discussion. But how do we change directories?
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A.3 cd (Change Directory)

You can change directories with the cd command, you simply type cd followed
by the name of the directory you wish to go to. For instance, I can move to
the parent directory of my home directory:

$ cd /home

$ pwd

/home

You can return to your home directory using the ‘~’ character. To move into
the parent of a given directory, you can use the special directory name ‘..’.

$ cd ~

$ pwd

/home/droundy

$ cd ..

$ pwd

/home

$ cd droundy

$ pwd

/home/droundy

When a path (directory location) starts with a ‘/’ character, it is an absolute
path, relative to the ‘/’ (root) directory. If you specify any other sort of path,
it is interpreted relative to the current directory.

We’ve now done a bit of navigation, but it’s hard to know what other
directories we can cd into.

A.4 ls (LiSt)

With the ls command, we can list the contents of any directory we can access.
To start, let’s run ls with no arguments.

$ ls

darcs haskell MyLibrary.bib ph265 ph632 proposals xmonad

Desktop Music papers ph631 Pictures Videos

Your home directory will probably be less cluttered than mine,1 and quite
likely won’t have any interesting directories to explore. For something more
interesting, let’s ask what there is in /home

$ ls /home

droundy monica

As you can see, only my wife and I have accounts on the machine I’m using.
Since it’s my work laptop, her home directory doesn’t have anything interesting,
so let’s explore the root directory.

1To be honest, I cleaned mine up for this example...
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$ ls /

bin cdrom etc lib media opt root srv tmp var

boot dev home lost+found mnt proc sbin sys usr vmlinuz

Most of these directories aren’t very interesting, but let’s take a look at one of
them anyhow.

$ ls /bin

bash cpio echo kill more pwd su which

cat date false ln mount rm tar zcat

chgrp df grep login mountpoint rmdir touch zgrep

chmod dir gunzip ls mv sed true zless

chown dmesg gzip mkdir ping sh umount

cp domainname hostname mktemp ps sleep uname

This is where many of the programs we are using reside. You can see echo,
pwd and ls. We do not see, however, cd, which is because it is actually a bash
internal command, rather than an actual program.

A.5 mkdir (MaKe DIRectory)

Let’s start making a few changes. We’ll begin my creating a new directory in
our home directory, in which to play.

$ mkdir learning-unix

At this point, let me share with you a cool bash feature. Suppose we want to
cd into the learning-unix directory we just created. We don’t need to type
the entire name of the directory, just enough for bash to recognize which one
we’re talking about. We do this using what is called command completion. Try
typing

$ cd l<TAB>

where by <TAB> I mean to press the tab key. The shell will immediately fill in
the rest of the directory name. Or, if you have two directories that start with
‘l’, it will beep, to let you know that it couldn’t find an exact match.

A.6 > (create a file)

You can create a file using the editor kate, but that editor is not universally
available on unix-like systems, so in this appendix I’ll show you another way
to create a file. This is by redirecting the output of any command.

$ echo Hello world. > new-file

The > operator redirects the output of any command to whatever file is speci-
fied. If this file already exists, it overwrites it.
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A.7 less (view contents of a text file)

There are several ways to view the contents of a text file, but one of the most
versatile is the less command.

$ less new-file

Hello world.

$ ls

new-file

So we now see that the > operator did indeed behave as advertized.

A.8 mv (MoVe, or rename a file)

We can rename a file using the mv command, which also is used for moving a
file into a different directory.

$ mv new-file newer-file

$ ls

newer-file

$ mkdir new-directory

$ ls

new-directory newer-file

$ mv *-file new-directory/

$ ls

new-directory/

$ ls new-directory

newer-file

A.9 rm (ReMove file)

We’re basically done, so let’s clean up the directories we’ve made.

$ rm new-directory/newer-file

$ cd ..

$ rm learning-unix

rm: cannot remove ‘learning-unix’: Is a directory

$ rm -r learning-unix

In the last case, we use the “recursive” flag, -r, which instructs rm to remove
both the directory and anything in it.



B Programming practice problems

This is a set of problems to be used for programming practice. These problems
are intended to be worked by pairs of students without the use of a computer.
The first student (the programmer) writes on paper a function (named foobar)
that solves the problem. The second part of the exercise is for a second student
(the computer) who should read program without knowing what it is intended to
do and execute it, again on paper. Both skills—writing and reading programs—
are important aspects of programming.

Programming on paper 1

On the back side of this page, you (the programmer) will write instructions
in python to be followed by another student (the computer). That student (the
computer) will follow your instructions on a given set of numbers.

Programmer: Is the number even? Call your function foobar(n).
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Running a program on paper 1

You must evaluate the following function foobar manually (i.e. without
using a computer). If the function will fail to execute, explain this, and suggest
what python will announce. If you can fix any apparent bugs, do so and then
execute the resulting code.

What is foobar(1)?
What is foobar(2)?
What is foobar(8)?
What is foobar(9)?
What is foobar(15)?
What is foobar( ) for a n of your choice?
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Programming on paper 2

On the back side of this page, you (the programmer) will write instructions
in python to be followed by another student (the computer). That student (the
computer) will follow your instructions on a given set of numbers.

Programmer: Is the number divisible by either 3 or 5? Call your function
foobar(n).



58 APPENDIX B. PROGRAMMING PRACTICE PROBLEMS

Running a program on paper 2

You must evaluate the following function foobar manually (i.e. without
using a computer). If the function will fail to execute, explain this, and suggest
what python will announce. If you can fix any apparent bugs, do so and then
execute the resulting code.

What is foobar(0)?
What is foobar(2)?
What is foobar(8)?
What is foobar(9)?
What is foobar(15)?
What is foobar( ) for a n of your choice?
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Programming on paper 3

On the back side of this page, you (the programmer) will write instructions
in python to be followed by another student (the computer). That student (the
computer) will follow your instructions on a given set of numbers.

Programmer: What is the sum of all positive integers less than n? Call your
function foobar(n).
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Running a program on paper 3

You must evaluate the following function foobar manually (i.e. without
using a computer). If the function will fail to execute, explain this, and suggest
what python will announce. If you can fix any apparent bugs, do so and then
execute the resulting code.

What is foobar(0)?
What is foobar(2)?
What is foobar(8)?
What is foobar(9)?
What is foobar(15)?
What is foobar( ) for a n of your choice?
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Programming on paper 4

On the back side of this page, you (the programmer) will write instructions
in python to be followed by another student (the computer). That student (the
computer) will follow your instructions on a given set of numbers.

Programmer: What is the largest perfect square that is less than n? Call your
function foobar(n).
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Running a program on paper 4

You must evaluate the following function foobar manually (i.e. without
using a computer). If the function will fail to execute, explain this, and suggest
what python will announce. If you can fix any apparent bugs, do so and then
execute the resulting code.

What is foobar(2)?
What is foobar(8)?
What is foobar(9)?
What is foobar(15)?
What is foobar(17)?
What is foobar( ) for a n of your choice?
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Programming on paper 5

On the back side of this page, you (the programmer) will write instructions
in python to be followed by another student (the computer). That student (the
computer) will follow your instructions on a given set of numbers.

Programmer: What is the sum of the squares of all non-negative odd integers
less than n? Call your function foobar(n).
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Running a program on paper 5

You must evaluate the following function foobar manually (i.e. without
using a computer). If the function will fail to execute, explain this, and suggest
what python will announce. If you can fix any apparent bugs, do so and then
execute the resulting code.

What is foobar(0)?
What is foobar(1)?
What is foobar(2)?
What is foobar(8)?
What is foobar( ) for a n of your choice?
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Programming on paper 6

On the back side of this page, you (the programmer) will write instructions
in python to be followed by another student (the computer). That student (the
computer) will follow your instructions on a given set of numbers.

Programmer: What is the square root of n, to a precision of 0.1? You may not
use the sqrt function, and must call your function foobar(n). Note that n
need not be an integer, but must be positive.
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Running a program on paper 6

You must evaluate the following function foobar manually (i.e. without
using a computer). If the function will fail to execute, explain this, and suggest
what python will announce. If you can fix any apparent bugs, do so and then
execute the resulting code.

What is foobar(0)?
What is foobar(1)?
What is foobar(-1)?
What is foobar(2)?
What is foobar(4)?
What is foobar(10)?
What is foobar( ) for a n of your choice?
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Programming on paper 7 hard!

On the back side of this page, you (the programmer) will write instructions
in python to be followed by another student (the computer). That student (the
computer) will follow your instructions on a given set of numbers.

Programmer: For a given integer n, what is the smallest positive integer which
is evenly divisible by all positive integers less than or equal to n? Call your
function foobar(n).
e.g. foobar(4) is 12, since 12 is divisible by 4, 3 and 2.



68 APPENDIX B. PROGRAMMING PRACTICE PROBLEMS

Running a program on paper 7

You must evaluate the following function foobar manually (i.e. without
using a computer). If the function will fail to execute, explain this, and suggest
what python will announce. If you can fix any apparent bugs, do so and then
execute the resulting code.

What is foobar(1)?
What is foobar(3)?
What is foobar(4.5)?
What is foobar(7)?
What is foobar( ) for a n of your choice?
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Programming on paper 8 hard!

On the back side of this page, you (the programmer) will write instructions
in python to be followed by another student (the computer). That student (the
computer) will follow your instructions on a given set of numbers.

Programmer: Solve the equation sin(x) + tan(x) = 1/n for x, to a precision of
±0.1. Call your function foobar(n).
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Running a program on paper 8

You must evaluate the following function foobar manually (i.e. without
using a computer). If the function will fail to execute, explain this, and suggest
what python will announce. If you can fix any apparent bugs, do so and then
execute the resulting code.

What is foobar(1)?
What is foobar(3)?
What is foobar(4.5)?
What is foobar(7)?
What is foobar( ) for a n of your choice?
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Programming on paper 9

On the back side of this page, you (the programmer) will write instructions
in python to be followed by another student (the computer). That student (the
computer) will follow your instructions on a given set of numbers.

Programmer: What is the greatest common factor of x and y? Call your
function foobar(x,y).
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Running a program on paper 9

You must evaluate the following function foobar manually (i.e. without
using a computer). If the function will fail to execute, explain this, and suggest
what python will announce. If you can fix any apparent bugs, do so and then
execute the resulting code.

What is foobar(1,2)?
What is foobar(2,4)?
What is foobar(6,9)?
What is foobar(5,7)?
What is foobar(x,y) for x and y of your choice?
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Programming on paper 10 very hard!

On the back side of this page, you (the programmer) will write instructions
in python to be followed by another student (the computer). That student (the
computer) will follow your instructions on a given set of numbers.

Programmer: Write a function to compute the probability that a determined
blackjack player starting with cards totalling to p value can beat the value d
without busting. Call your function foobar(p,d). For simplicity, assume that
each card is dealt from a fresh deck so the probability of each rank is always
1/13.

I won’t explain the rules of blackjack here. You can ask me or another
student if you’re curious. This is not an easy problem, but it can be solved in
under 40 lines of python.

A few examples:
foobar(20,20) = 0.0769230769231

foobar(10,19) = 0.509101852441

foobar(10,18) = 0.618446810954

foobar(6,16) = 0.576849507915

foobar(16,16) = 0.384615384615

foobar(19,18) = 1



74 APPENDIX B. PROGRAMMING PRACTICE PROBLEMS

Running a program on paper 10

You must evaluate the following function foobar manually (i.e. without
using a computer). If the function will fail to execute, explain this, and suggest
what python will announce. If you can fix any apparent bugs, do so and then
execute the resulting code.

What is foobar(20,20)?
What is foobar(19,18)?
What is foobar( , ) for inputs of your choice?
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Programming on paper 11 hard

On the back side of this page, you (the programmer) will write instructions
in python to be followed by another student (the computer). That student (the
computer) will follow your instructions on a given set of numbers.

Programmer: The Gregorian calendar was introduced by Pope Gregory XII in
1582. How many leap years have there been since they were introduced (the
first one was in 1584), but before the year y? A leap year is a year that is
evenly divisible by four, but is not also evenly divisible by 100, unless it is also
evenly divisible by 400. You may call your function foobar(y).
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Running a program on paper 11

You must evaluate the following function foobar manually (i.e. without
using a computer). If the function will fail to execute, explain this, and suggest
what python will announce. If you can fix any apparent bugs, do so and then
execute the resulting code.

What is foobar(1582)?
What is foobar(1588)?
What is foobar(1590)?
What is foobar(0)?
What is foobar(2009)?
What is foobar( ) where the input is a year of your choice?
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Programming on paper 12

On the back side of this page, you (the programmer) will write instructions
in python to be followed by another student (the computer). That student (the
computer) will follow your instructions on a given set of numbers.

Programmer: Write a function foobar that given an input r returns the side
of the largest square with sides having an integer length that will fit in a circle
of radius r.
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Running a program on paper 12

You must evaluate the following function foobar manually (i.e. without
using a computer). If the function will fail to execute, explain this, and suggest
what python will announce. If you can fix any apparent bugs, do so and then
execute the resulting code.

What is foobar(1)?
What is foobar(1.5)?
What is foobar(3)?
What is foobar(0)?
What is foobar( ) where the input is a positive number of your choice?
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