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D
%_t +J=V xH (Ampere)
0B
v —V x E (Faraday)
V-D=p (Poisson)
V-B=0 (Gauss)
E = Electric field vector D = Electric displacement
H = Magnetic field vector B = Magnetic flux density
p = Electric charge density J = Current density

We impose homogeneous initial conditions and boundary conditions.



Maxwell's equations are completed by constitutive laws that describe the
response of the medium to the electromagnetic field.

D = ¢cE+P
B = yH+M
J = oE+J;

Polarization e = Electric permittivity

P=
M = Magnetization w = Magnetic permeability
Js = Source Current o=

Electric Conductivity



@ Assume that the electric field is polarized to oscillate only in the y
direction, propagates in x direction, and everything is uniform in z
direction.

Equations involving E, and H,.

OE _ oM dP
ot  Ox Yo dt
OH, _ _0&

"o T o SNV

o If o =0and P =0, then E = E, satisfies the 1D wave equation with

c=1/\/en

PE(x,1) _ L0PE(x.t)

ot? Ox?




@ Recall
D=c+P

where P is the dielectric polarization.
@ We can generally define P in terms of a convolution

P(t,x) = g xE(t,x) = /0 g(t —s,x;v)E(s,x)ds,

where g is a general dielectric response function (DRF), and v is
some parameter set.



@ Debye model

g(t,x) = eg(es — €))7 €7 /7
(or TP 4+ P = ¢g(es — €50 )E)

@ Lorentz model
g(t,x) = eowi/yo e~ /?"sin(upt)

.1
(or P + —P+ wjP = €ow?E)



@ Converting to frequency domain via Fourier transforms
D = ¢(w)E

@ Debye model

6(u)):600+65_600 g

14wt iweg
@ Cole-Cole model

B €s — €0 o
(W) =eot 77 (lor)=a e
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In general there are multiple mechanisms at various scales that account for
polarization. To attempt to account for several of these over a range of
frequencies, researchers tend to use multi-pole models:

@ Multi-pole Debye model:

n
JAN . o

€(w)p = oo+ mz::l 1+ iwrm, + iweg

@ Multi-pole Cole-Cole model:

n
Nem o
e(w)cc = €0 + mZ::I 5 Gory) ) e
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Figure: Real part of €(w), €, or the permittivity.
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Figure: “Imaginary part” of €(w), o, or the conductivity.



To account for the possible effect of multiple parameter sets v/, consider
h(t,x; F) :/ g(t,x;v)dF(v),
N

where N\ is some admissible set and F € P(N).
Then the polarization becomes:

P(t,x) = /Ot h(t — s,x)E(s,x)ds.

Motivation: match data even better than multi-pole Cole-Cole, and more
efficient to simulate.
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We will consider the problem of determining the distribution of dielectric
parameters which describe a material by using the following as data:

o Complex permittivity (frequency-domain)

@ Electric field (time-domain)



@ Given data {€}; we seek to determine a probability measure F*, such
that

F*= min_ J(F),
FePWN)

where, for example,
T(F) =Y [e(w: F) — &]*.
J

® As e(w) is complex, we define e = [FR(e(w))), R(e(w))iwjeq)] and
minimize the ¢2-norm of the relative error between e(F) and é.

@ Given a trial distribution Fj we compute €(wj; Fx) and test J(F),
then update Fiy1 as necessary.



@ To compute €(w; Fx) we perform N Monte Carlo (MC) simulations.

@ Each MC simulation consists of drawing trial values of one or more of
the following according to the definition of the distribution F:
€oopr Deg, T, Oy

@ We then compute

n JANS n oy
1+ (ing) iweo

e(w)e = €ooy

@ The term e(w; F) is simply computed as the sample mean of the
e(w; F)e,

1 N
e(w)pp = N Zzzle(w)g.



We need to select N (the number of MC simulations in the computation
of e(w)pp) sufficiently large so as to reduce variability.
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@ Consider
Aep, o

1+ (iwtm,) iweg

6("‘})Z = €x t+ Z
@ For each pole m, we randomly sample each Ae¢,,, and 7, where
Tmy ~ U (1 — am)Tm, (1 + bm)Tm]

and
DNem, ~U[(1 — cm)Dém, (1 + dm)Aem]

for some given “reference values” of 7,, and Aep,.

@ Thus, F is determined by a,, b, cm and dp,, i.e., they are the values
of interest in our inverse problem.



@ We use complex permittivity measurements from [GLG96] describing
dry skin as data.

@ We use the estimates from [GLG96] for e, 0, 7, and Aep, as our
“reference values”.

@ The constraints on the distribution parameters were

ay €1[0,1] by €]0,1]
ar € [5,1.5] b e[L,2]
a€fo,1] d€]0,1]
(& NS [0, 1] dr € [0, 1]

@ The results from DIRECT (global constrained optimization) were

a; = 0.1337 by = 0.6646
ap =1.0000 by, =1.7840
c = 0.4630 d; = 0.5000
c =0.5988 d» = 0.4630

J =12.1945
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Figure: Uniform distributions for Ae values in multi-pole Debye model for dry
skin.
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Figure: Uniform distributions for 7 values in multi-pole Debye model for dry skin.
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Figure: Real part of €(w), o, or the permittivity. Model A refers to the Debye
model with distributions only on 7. Model B refers to the Debye model with
distributions on both 7 and Ae. Note: U;s6 = 18.0443,

X2(4) - @ = {.05,.01,.001} = 7 = {9.49,13.28,18.47}



10°
—=— Model A relative cost
—+—Model B relative cost
10
3 10k
o
[
2
8
& 10
107
-5
10 L L L L
10° 10* 10° 10° 10" 10"
f (Hz)

Figure: The relative costs between Model A and the true data and between
Model B and the true data. Model A refers to the Debye model with distributions
only on 7. Model B refers to the Debye model with distributions on both 7 and
Ae.



Levenberg-Marquardt failed to find a local minimum.

In addition, programs such as fminsearch and fmincon
(fminsearch subject to a set of constraints) were also tried.

This difficulty was mentioned in [GLG96].

The randomness of the inverse problem implies that it is ill-posed;
gradient-based algorithms will often choose a non-descent direction.

Methods for implementation of such local minimum searches is an
area which should be explored further.



N T XUl Frequency-domain Inverse Problem
To compare the time-domain response of each model of dry skin (Debye,
Cole-Cole, and Distributed Debey), we simulate a broad-band pulse
through the materials.
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Figure: The top plot shows the value of the electric field at a fixed point in space
as time varies. The bottom shows the FFT of the two signals.
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Figure: Forward simulations with different distributions of dielectric parameters.



o Given data {E}; we seek to determine a probability measure F*, such
that

F*= min_ J(F),
FePN)

where, for example,
N2
IR =3 (E0.5:F) - 5)
Jj

@ Given a trial distribution Fj we compute €(wj; Fx) and test J(F),
then update Fiy1 as necessary.

@ Need a (fast) (numerical) method for computing E(x, t; F).



o Continuity of F — (E,E) = continuity of F — J(F)

o Compactness of N' = compactness of P(N') with respect to the
Prohorov metric

@ Therefore, a minimum of J(F) over P(N) exists



Js(t,z) = do(z) sin(wt) o 1(t)



9FE _ oH . dP
6({)t“_ ox g dt
oH _ 0E
M@t_ ox

P(t,x):/N/O g(t —s,x;v)E(s,x)ds dF (v).

@ Second order FEM in space
@ piecewise linear splines
@ Second order FD in time

o Crank-Nicholson (P)
o Central differences (E)
9 €p — Pn — €py1 — Ppt1 — -

@ Use quadrature (trapezoidal) for distribution



@ Mixture of two Debye materials with 71 and 7

@ Total polarization a weighted average
P = a1P1(T1) + Oész(Tz)
o Corresponds to the discrete probability distribution

dF (1) = [a16(11) + apd(m2)] dT



@ Assume the proportions a1 and ap = 1 — a are known.

@ Define the following least squares optimization problem:

min J = m|n Z‘E(tj,O (7'1,72))—

(11,7m2) (11,7m2)

where EJ is synthetic data generated using (71,75 ) in our simulation
routine.
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The solid line above the surface represents the curve of constant
7:=a1m + (1 — o). Note: wf ~ .15 < 1.



a1 T T
Initial | 3.95000e-8 1.26400e-8 2.60700e-8
LM 3.19001e-8 1.55032e-8 2.37016e-8
Final | 3.16039e-8 1.55744e-8 2.37016e-8
Exact | 3.16000e-8 1.58000e-8 2.37000e-8

@ Levenberg-Marquardt converges to curve of constant 7

@ Traversing curve results in accurate final estimates
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The solid line above the surface represents the curve of constant
A= L =9 4 2 Note: wF ~ 15000 > 1.
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o T A

Initial | 3.95000e-8 1.26400e-8 0.174167
LM 4.08413e-8 1.41942e-8 0.158333
Final | 3.16038e-8 1.57991e-8 0.158333
Exact | 3.16000e-8 1.58000e-8 0.158333

o Levenberg-Marquardt converges to curve of constant A

@ Traversing curve results in accurate final estimates



@ Gaussian distribution of log(7) with mean p and with standard deviation o

1 11 (log T — p)?
dF(7i 11, 0) = ——— = Zexp [ BT 1)) 4
(T' s U) \/27‘(0’2 In10 7 =P ( 20'2 n

@ Corresponding inverse problem:

min 3 [E(5.0: 1) - £
J

q=(p,0



Estimated density of T as log normal

Converged estimate (+) Initial estimate (*)

and true estimate (0) /
10+ /

Shown are the initial density function, the minimizing density function and
the true density function (the latter two being practically identical).



@ Bi-gaussian distribution with means p; and uy and with standard deviations
01 and 03.

dF (1) = andF(7; 1, 01) + (1 — ) dF(7; iz, 02),

where

A 1 11 (log 7 — p)?
dF(T- Hy U) 27‘(’0’2 In 10 T exp < 20.2 T,

@ Corresponding inverse problem:

A |2
min E(t;,0; _ E-‘ )
<)Z!| (£:,0:9) — £



case M1 o1 M2 0?2 T

Initial | 1.58001e-7 0.036606  3.16002e-9 0.0571969 8.1201e-8
w1 | 4.27129e-8  0.036606 4.24844e-9 0.0571969 2.36499e-8
Final | 3.09079e-8 0.0136811 1.63897e-8 0.0663628 2.37978e-8
Exact | 3.16000e-8 0.0457575 1.58000e-8 0.0457575 2.37957e-8

@ Levenberg-Marquardt converges to curve of constant 7

@ Traversing curve results in accurate final estimates

Note: for this continuous distribution,

7= /T rdF (7).



case 1251 o1 M2 02 A

Initial | 1.58001e-7 0.036606  3.16002e-9 0.0571969 0.538786
1,2 | 1.58001e-7 0.036606  1.12595e-8 0.0571969 0.158863
Final | 3.23914e-8 0.0366059 1.56020e-8 0.0571968 0.158863
Exact | 3.16000e-8 0.0457575 1.58000e-8 0.0457575 0.158863

o Levenberg-Marquardt converges to curve of constant \

@ Traversing curve results in accurate final estimates

Note: for this continuous distribution,

~ 1
= [ —dF(7).
A TCTd (1)



@ We have shown well-posedness of the problem for determining
distributions of dielectric parameters

@ Our estimation methods worked well for discrete distributions
@ Our estimation methods worked well for the continuous uniform
distribution and gaussian distributions

@ We are currently only able to determine the means in the bi-gaussian
distributions, the data is relatively insensitive to the standard
deviations



@ A good fit when A (or 7) is constant suggests using a single 7, even
for the bi-gaussian case

@ This modeling approach concludes that the “effective” parameter
should be 7 if wr < 1, else 1/cA

@ We have also considered a traditional homogenization method based
on “periodic unfolding” (See [BBCT06] for details)

@ This approach allows us to use information about the periodic
structure, i.e., hexagonal cells.
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