Approximating Dispersive Mechanisms Using the Debye Model with Distributions of Dielectric Parameters

Nathan Gibson

Assistant Professor Department of Mathematics gibsonn@math.oregonstate.edu

In Collaboration with: Prof. H. T. Banks, CRSC Dr. W. P. Winfree, NASA Langley

> Karen Barrese Smith, OSU Neel Chugh, Tufts

1 Background

- Maxwell's Equations
- The One Dimensional Problem
- Dielectric Parameters of Interest

2 Cole-Cole and Debye Models

- Cole-Cole and Debye Models
- Distributions

Inverse Problems

- Frequency-domain Inverse Problem
- Time-domain Inverse Problem

1 Background

- Maxwell's Equations
- The One Dimensional Problem
- Dielectric Parameters of Interest

Cole-Cole and Debye Models

- Cole-Cole and Debye Models
- Distributions

Inverse Problems

- Frequency-domain Inverse Problem
- Time-domain Inverse Problem

Maxwell's Equations

$$\frac{\partial \mathbf{D}}{\partial t} + \mathbf{J} = \nabla \times \mathbf{H} \quad (\text{Ampere})$$
$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E} \quad (\text{Faraday})$$
$$\nabla \cdot \mathbf{D} = \rho \qquad (\text{Poisson})$$
$$\nabla \cdot \mathbf{B} = 0 \qquad (\text{Gauss})$$

- **E** = Electric field vector $\mathbf{D} =$ Electric displacement
- **H** = Magnetic field vector
- Electric charge density $\rho =$
- $\mathbf{B} = Magnetic flux density$
- $\mathbf{J} =$ Current density

We impose homogeneous initial conditions and boundary conditions.

Maxwell's equations are completed by constitutive laws that describe the response of the medium to the electromagnetic field.

$$\begin{aligned} \mathbf{D} &= \epsilon \mathbf{E} + \mathbf{P} \\ \mathbf{B} &= \mu \mathbf{H} + \mathbf{M} \\ \mathbf{J} &= \sigma \mathbf{E} + \mathbf{J}_s \end{aligned}$$

- **P** = Polarization Electric permittivity $\epsilon =$

- M = Magnetization $\mu = Magnetic permeability$
- $J_s =$ Source Current $\sigma =$ Electric Conductivity

Maxwell's Equations in One Space Dimension

• Assume that the electric field is polarized to oscillate only in the y direction, propagates in x direction, and everything is uniform in z direction.

• If $\sigma = 0$ and $\mathbf{P} = 0$, then $E = E_y$ satisfies the 1D wave equation with $c = 1/\sqrt{\epsilon\mu}$

$$\frac{\partial^2 E(x,t)}{\partial t^2} = c^2 \frac{\partial^2 E(x,t)}{\partial x^2}$$

Constitutive Relations

Recall

$\mathbf{D} = \epsilon \mathbf{E} + \mathbf{P}$

where \mathbf{P} is the dielectric polarization.

• We can generally define P in terms of a convolution

$$\mathbf{P}(t,\mathbf{x}) = g \star \mathbf{E}(t,\mathbf{x}) = \int_0^t g(t-s,\mathbf{x};\nu) \mathbf{E}(s,\mathbf{x}) ds,$$

where g is a general dielectric response function (DRF), and ν is some parameter set.

DRF Examples

• Debye model

$$g(t, \mathbf{x}) = \epsilon_0(\epsilon_s - \epsilon_\infty)/\tau \ e^{-t/\tau}$$

(or $\tau \dot{\mathbf{P}} + \mathbf{P} = \epsilon_0(\epsilon_s - \epsilon_\infty)\mathbf{E}$)

Lorentz model

$$g(t, \mathbf{x}) = \epsilon_0 \omega_p^2 / \nu_0 \ e^{-t/2\tau} sin(\nu_0 t)$$

(or $\ddot{\mathbf{P}} + \frac{1}{\tau} \dot{\mathbf{P}} + \omega_0^2 \mathbf{P} = \epsilon_0 \omega_p^2 \mathbf{E}$)

Converting to frequency domain via Fourier transforms

$$\hat{\mathbf{D}} = \epsilon(\omega)\hat{\mathbf{E}}$$

• Debye model $\epsilon(\omega)=\epsilon_\infty+\frac{\epsilon_s-\epsilon_\infty}{1+i\omega\tau}+\frac{\sigma}{i\omega\epsilon_0}$

Cole-Cole model

$$\epsilon(\omega) = \epsilon_{\infty} + \frac{\epsilon_{s} - \epsilon_{\infty}}{1 + (i\omega\tau)^{1-\alpha}} + \frac{\sigma}{i\omega\epsilon_{0}}$$

1 Background

- Maxwell's Equations
- The One Dimensional Problem
- Dielectric Parameters of Interest

2 Cole-Cole and Debye Models

- Cole-Cole and Debye Models
- Distributions

Inverse Problems

- Frequency-domain Inverse Problem
- Time-domain Inverse Problem

In general there are multiple mechanisms at various scales that account for polarization. To attempt to account for several of these over a range of frequencies, researchers tend to use multi-pole models:

• Multi-pole Debye model:

$$\epsilon(\omega)_D = \epsilon_\infty + \sum_{m=1}^n \frac{\Delta \epsilon_m}{1 + i\omega \tau_m} + \frac{\sigma}{i\omega \epsilon_0}$$

• Multi-pole Cole-Cole model:

$$\epsilon(\omega)_{CC} = \epsilon_{\infty} + \sum_{m=1}^{n} \frac{\Delta \epsilon_m}{1 + (i\omega\tau_m)^{(1-\alpha_m)}} + \frac{\sigma}{i\omega\epsilon_0}$$

Figure: Real part of $\epsilon(\omega)$, ϵ , or the permittivity.

Nathan Gibson (OSU-Math)

Approximating Dispersive Mechanisms

Cole-Cole and Debye Models Dry skin data

Figure: "Imaginary part" of $\epsilon(\omega)$, σ , or the conductivity.

Nathan Gibson (OSU-Math)

Approximating Dispersive Mechanisms

Distributions of Parameters

To account for the possible effect of multiple parameter sets ν , consider

$$h(t,\mathbf{x};F) = \int_{\mathcal{N}} g(t,\mathbf{x};\nu) dF(\nu),$$

where \mathcal{N} is some admissible set and $F \in \mathfrak{P}(\mathcal{N})$. Then the polarization becomes:

$$\mathbf{P}(t,\mathbf{x}) = \int_0^t h(t-s,\mathbf{x})\mathbf{E}(s,\mathbf{x})ds.$$

Motivation: match data even better than multi-pole Cole-Cole, and more efficient to simulate.

Background

- Maxwell's Equations
- The One Dimensional Problem
- Dielectric Parameters of Interest

Cole-Cole and Debye Models

- Cole-Cole and Debye Models
- Distributions

Inverse Problems

- Frequency-domain Inverse Problem
- Time-domain Inverse Problem

We will consider the problem of determining the distribution of dielectric parameters which describe a material by using the following as data:

- Complex permittivity (frequency-domain)
- Electric field (time-domain)

Inverse Problem for *F*

• Given data $\{\hat{\epsilon}\}_j$ we seek to determine a probability measure F^* , such that

$$F^* = \min_{F \in \mathfrak{P}(\mathcal{N})} \mathcal{J}(F),$$

where, for example,

$$\mathcal{J}(F) = \sum_{j} \left[\epsilon(\omega_j; F) - \hat{\epsilon}_j \right]^2.$$

- As $\epsilon(\omega)$ is complex, we define $e = [\Re(\epsilon(\omega_j)), \Re(\epsilon(\omega_j)i\omega_j\epsilon_0)]$ and minimize the ℓ_2 -norm of the relative error between e(F) and \hat{e} .
- Given a trial distribution F_k we compute $\epsilon(\omega_j; F_k)$ and test $\mathcal{J}(F_k)$, then update F_{k+1} as necessary.

Monte Carlo Simulations

- To compute $\epsilon(\omega; F_k)$ we perform N Monte Carlo (MC) simulations.
- Each MC simulation consists of drawing trial values of one or more of the following according to the definition of the distribution F: $\epsilon_{\infty_{\ell}}, \Delta \epsilon_{\ell}, \tau_{\ell}, \sigma_{\ell}$
- We then compute

$$\epsilon(\omega)_{\ell} = \epsilon_{\infty_{\ell}} + \frac{\Delta \epsilon_{\ell}}{1 + (i\omega\tau_{\ell})} + \frac{\sigma_{\ell}}{i\omega\epsilon_{0}}$$

• The term $\epsilon(\omega; F)$ is simply computed as the sample mean of the $\epsilon(\omega; F)_{\ell}$,

$$\epsilon(\omega)_{DD} = \frac{1}{N} \sum_{\ell=1}^{N} \epsilon(\omega)_{\ell}.$$

Convergence of MC

We need to select N (the number of MC simulations in the computation of $\epsilon(\omega)_{DD}$) sufficiently large so as to reduce variability.

Multi-pole Example

Consider

$$\epsilon(\omega)_{\ell} = \epsilon_{\infty} + \sum_{m=1}^{n} \frac{\Delta \epsilon_{m_{\ell}}}{1 + (i\omega\tau_{m_{\ell}})} + \frac{\sigma}{i\omega\epsilon_{0}}$$

• For each pole *m*, we randomly sample each $\Delta \epsilon_{m_{\ell}}$ and $\tau_{m_{\ell}}$ where

$$au_{m_{\ell}} \sim \mathcal{U}\left[(1-a_m)\tau_m, (1+b_m)\tau_m\right],$$

and

$$\Delta \epsilon_{m_{\ell}} \sim \mathcal{U}\left[(1-c_m)\Delta \epsilon_m, (1+d_m)\Delta \epsilon_m\right]$$

for some given "reference values" of τ_m and $\Delta \epsilon_m$.

• Thus, *F* is determined by *a_m*, *b_m*, *c_m* and *d_m*, i.e., they are the values of interest in our inverse problem.

Dry Skin Problem

- We use complex permittivity measurements from [GLG96] describing dry skin as data.
- We use the estimates from [GLG96] for $\epsilon_{\infty}, \sigma, \tau_m$ and $\Delta \epsilon_m$ as our "reference values".
- The constraints on the distribution parameters were

$$\begin{array}{ll} a_1 \in [0,1] & b_1 \in [0,1] \\ a_2 \in [.5,1.5] & b_2 \in [1,2] \\ c_1 \in [0,1] & d_1 \in [0,1] \\ c_2 \in [0,1] & d_2 \in [0,1] \end{array}$$

• The results from DIRECT (global constrained optimization) were

$$\begin{array}{ll} a_1 = 0.1337 & b_1 = 0.6646 \\ a_2 = 1.0000 & b_2 = 1.7840 \\ c_1 = 0.4630 & d_1 = 0.5000 \\ c_2 = 0.5988 & d_2 = 0.4630 \end{array}$$

$$J = 12.1945$$

Figure: Uniform distributions for $\Delta\epsilon$ values in multi-pole Debye model for dry skin.

Figure: Uniform distributions for τ values in multi-pole Debye model for dry skin.

Figure: Real part of $\epsilon(\omega)$, σ , or the permittivity. Model A refers to the Debye model with distributions only on τ . Model B refers to the Debye model with distributions on both τ and $\Delta\epsilon$. Note: $U_{156} = 18.0443$, $\chi^2(4): \alpha = \{.05, .01, .001\} \implies \tau = \{9.49, 13.28, 18.47\}$

Figure: The relative costs between Model A and the true data and between Model B and the true data. Model A refers to the Debye model with distributions only on τ . Model B refers to the Debye model with distributions on both τ and $\Delta \epsilon$.

Comments on Optimization

- Levenberg-Marquardt failed to find a local minimum.
- In addition, programs such as fminsearch and fmincon (fminsearch subject to a set of constraints) were also tried.
- This difficulty was mentioned in [GLG96].
- The randomness of the inverse problem implies that it is ill-posed; gradient-based algorithms will often choose a non-descent direction.
- Methods for implementation of such local minimum searches is an area which should be explored further.

To compare the time-domain response of each model of dry skin (Debye, Cole-Cole, and Distributed Debey), we simulate a broad-band pulse through the materials.

Figure: The top plot shows the value of the electric field at a fixed point in space as time varies. The bottom shows the FFT of the two signals.

Figure: Forward simulations with different distributions of dielectric parameters.

Nathan Gibson (OSU-Math)

Inverse Problem for *F*

• Given data $\{\hat{E}\}_j$ we seek to determine a probability measure F^* , such that

$$F^* = \min_{F \in \mathfrak{P}(\mathcal{N})} \mathcal{J}(F),$$

where, for example,

$$\mathcal{J}(F) = \sum_{j} \left(E(0, t_j; F) - \hat{E}_j \right)^2.$$

- Given a trial distribution F_k we compute $\epsilon(\omega_j; F_k)$ and test $\mathcal{J}(F_k)$, then update F_{k+1} as necessary.
- Need a (fast) (numerical) method for computing E(x, t; F).

Stability of Inverse Problem

- Continuity of $F \to (E, \dot{E}) \implies$ continuity of $F \to \mathcal{J}(F)$
- Compactness of $\mathcal{N} \implies$ compactness of $\mathfrak{P}(\mathcal{N})$ with respect to the Prohorov metric
- Therefore, a minimum of $\mathcal{J}(F)$ over $\mathfrak{P}(\mathcal{N})$ exists

1D Example

Numerical Discretization

$$\begin{aligned} \epsilon \frac{\partial E}{\partial t} &= -\frac{\partial H}{\partial x} - \sigma E - \frac{dP}{dt} \\ \mu \frac{\partial H}{\partial t} &= -\frac{\partial E}{\partial x} \\ P(t,x) &= \int_{\mathcal{N}} \int_{0}^{t} g(t-s,\mathbf{x};\nu) E(s,x) ds \, dF(\nu). \end{aligned}$$

- Second order FEM in space
 - piecewise linear splines
- Second order FD in time
 - Crank-Nicholson (P)
 - Central differences (E)
 - $e_n \rightarrow p_n \rightarrow e_{n+1} \rightarrow p_{n+1} \rightarrow \cdots$
- Use quadrature (trapezoidal) for distribution

Discrete Distribution Example

- Mixture of two Debye materials with au_1 and au_2
- Total polarization a weighted average

$$P = \alpha_1 P_1(\tau_1) + \alpha_2 P_2(\tau_2)$$

• Corresponds to the discrete probability distribution

$$dF(\tau) = \left[\alpha_1 \delta(\tau_1) + \alpha_2 \delta(\tau_2)\right] d\tau$$

Discrete Distribution Inverse Problem

- Assume the proportions α_1 and $\alpha_2 = 1 \alpha_1$ are known.
- Define the following least squares optimization problem:

$$\min_{(\tau_1,\tau_2)} \mathcal{J} = \min_{(\tau_1,\tau_2)} \sum_j \left| E(t_j, 0; (\tau_1, \tau_2)) - \hat{E}_j \right|^2,$$

where \hat{E}_j is synthetic data generated using (τ_1^*, τ_2^*) in our simulation routine.

Discrete Distribution J using $10^6 Hz$

The solid line above the surface represents the curve of constant $\tilde{\tau} := \alpha_1 \tau_1 + (1 - \alpha_1) \tau_2$. Note: $\omega \tilde{\tau} \approx .15 < 1$.

Inverse Problem Results 10⁶ Hz

	$ au_1$	$ au_2$	$ ilde{ au}$
Initial	3.95000e-8	1.26400e-8	2.60700e-8
LM	3.19001e-8	1.55032e-8	2.37016e-8
Final	3.16039e-8	1.55744e-8	2.37016e-8
Exact	3.16000e-8	1.58000e-8	2.37000e-8

- Levenberg-Marquardt converges to curve of constant $\tilde{\tau}$
- Traversing curve results in accurate final estimates

Discrete Distribution J using 10¹¹ Hz

The solid line above the surface represents the curve of constant $\tilde{\lambda} := \frac{1}{c\tilde{\tau}} = \frac{\alpha_1}{c\tau_1} + \frac{\alpha_2}{c\tau_2}$. Note: $\omega \tilde{\tau} \approx 15000 > 1$.

Nathan Gibson (OSU-Math)

Approximating Dispersive Mechanisms

Inverse Problem Results 10¹¹Hz

	$ au_1$	$ au_2$	$ ilde{\lambda}$
Initial	3.95000e-8	1.26400e-8	0.174167
LM	4.08413e-8	1.41942e-8	0.158333
Final	3.16038e-8	1.57991e-8	0.158333
Exact	3.16000e-8	1.58000e-8	0.158333

- Levenberg-Marquardt converges to curve of constant $\tilde{\lambda}$
- Traversing curve results in accurate final estimates

Log-Normal Distribution of τ

• Gaussian distribution of $log(\tau)$ with mean μ and with standard deviation σ :

$$dF(\tau;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \frac{1}{\ln 10} \frac{1}{\tau} \exp\left(-\frac{(\log \tau - \mu)^2}{2\sigma^2}\right) d\tau,$$

• Corresponding inverse problem:

$$\min_{q=(\mu,\sigma)}\sum_{j}\left|E(t_{j},0;(\mu,\sigma))-\hat{E}_{j}\right|^{2}.$$

Shown are the initial density function, the minimizing density function and the true density function (the latter two being practically identical).

Nathan Gibson (OSU-Math)

Bi-gaussian Distribution of $\log \tau$

• Bi-gaussian distribution with means μ_1 and μ_2 and with standard deviations σ_1 and σ_2 :

$$dF(\tau) = \alpha_1 d\hat{F}(\tau; \mu_1, \sigma_1) + (1 - \alpha_1) d\hat{F}(\tau; \mu_2, \sigma_2),$$

where

$$d\hat{F}(\tau;\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \frac{1}{\ln 10} \frac{1}{\tau} \exp\left(-\frac{(\log \tau - \mu)^2}{2\sigma^2}\right) d\tau,$$

• Corresponding inverse problem:

$$\min_{q=(\mu_1,\sigma_1,\mu_2,\sigma_2)}\sum_{j}\left||E(t_j,0;q)|-|\hat{E}_j|\right|^2.$$

Bi-gaussian Results with 10⁶*Hz*

case	μ_1	σ_1	μ_2	σ_2	$ ilde{ au}$
Initial	1.58001e-7	0.036606	3.16002e-9	0.0571969	8.1201e-8
μ_1,μ_2	4.27129e-8	0.036606	4.24844e-9	0.0571969	2.36499e-8
Final	3.09079e-8	0.0136811	1.63897e-8	0.0663628	2.37978e-8
Exact	3.16000e-8	0.0457575	1.58000e-8	0.0457575	2.37957e-8

- Levenberg-Marquardt converges to curve of constant $\tilde{\tau}$
- Traversing curve results in accurate final estimates

Note: for this continuous distribution,

$$ilde{ au} = \int_{\mathcal{T}} au dF(au).$$

Bi-gaussian Results with 10¹¹ Hz

case	μ_1	σ_1	μ_2	σ_2	$ ilde{\lambda}$
Initial	1.58001e-7	0.036606	3.16002e-9	0.0571969	0.538786
μ_1,μ_2	1.58001e-7	0.036606	1.12595e-8	0.0571969	0.158863
Final	3.23914e-8	0.0366059	1.56020e-8	0.0571968	0.158863
Exact	3.16000e-8	0.0457575	1.58000e-8	0.0457575	0.158863

- \bullet Levenberg-Marquardt converges to curve of constant $\tilde{\lambda}$
- Traversing curve results in accurate final estimates

Note: for this continuous distribution,

$$\tilde{\lambda} = \int_{\mathcal{T}} \frac{1}{c\tau} dF(\tau).$$

Comments on Time-domain Inverse Problems

- We have shown well-posedness of the problem for determining distributions of dielectric parameters
- Our estimation methods worked well for discrete distributions
- Our estimation methods worked well for the continuous uniform distribution and gaussian distributions
- We are currently only able to determine the means in the bi-gaussian distributions, the data is relatively insensitive to the standard deviations

- A good fit when $\tilde{\lambda}$ (or $\tilde{\tau}$) is constant suggests using a single τ , even for the bi-gaussian case
- This modeling approach concludes that the "effective" parameter should be $\tilde{\tau}$ if $\omega\tau<$ 1, else $1/c\tilde{\lambda}$
- We have also considered a traditional homogenization method based on "periodic unfolding" (See [BBC⁺06] for details)
- This approach allows us to use information about the periodic structure, i.e., hexagonal cells.

H. T. Banks, V. A. Bokil, D. Cioranescu, N. L. Gibson, G. Griso, and B. Miara.

Homogenization of periodically varying coefficients in electromagnetic materials.

28(2):191-221, 2006.

HT Banks and NL Gibson.

Electromagnetic inverse problems involving distributions of dielectric mechanisms and parameters.

QUARTERLY OF APPLIED MATHEMATICS, 64(4):749, 2006.

S. Gabriel, RW Lau, and C. Gabriel.

The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues (results available online at http://niremf.ifac.cnr.it/docs/DIELECTRIC/home.html). *Phys. Med. Biol*, 41(11):2271–2293, 1996.