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Background Maxwell’s Equations

Maxwell’s Equations

∂D

∂t
+ J = ∇× H (Ampere)

∂B

∂t
= −∇× E (Faraday)

∇ · D = ρ (Poisson)

∇ · B = 0 (Gauss)

E = Electric field vector

H = Magnetic field vector

ρ = Electric charge density

D = Electric displacement

B = Magnetic flux density

J = Current density

We impose homogeneous initial conditions and boundary conditions.
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Background Maxwell’s Equations

Constitutive Laws

Maxwell’s equations are completed by constitutive laws that describe the
response of the medium to the electromagnetic field.

D = ǫE + P

B = µH + M

J = σE + Js

P = Polarization

M = Magnetization

Js = Source Current

ǫ = Electric permittivity

µ = Magnetic permeability

σ = Electric Conductivity
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Background The One Dimensional Problem

Maxwell’s Equations in One Space Dimension

Assume that the electric field is polarized to oscillate only in the y

direction, propagates in x direction, and everything is uniform in z

direction.

Equations involving Ey and Hz .

ǫ
∂Ey

∂t
= −∂Hz
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If σ = 0 and P = 0, then E = Ey satisfies the 1D wave equation with
c = 1/

√
ǫµ

∂2E (x , t)

∂t2
= c2 ∂2E (x , t)

∂x2
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Background Dielectric Parameters of Interest

Constitutive Relations

Recall
D = ǫE + P

where P is the dielectric polarization.

We can generally define P in terms of a convolution

P(t, x) = g ⋆ E(t, x) =

∫ t

0
g(t − s, x; ν)E(s, x)ds,

where g is a general dielectric response function (DRF), and ν is
some parameter set.
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Background Dielectric Parameters of Interest

DRF Examples

Debye model

g(t, x) = ǫ0(ǫs − ǫ∞)/τ e−t/τ

(or τ Ṗ + P = ǫ0(ǫs − ǫ∞)E)

Lorentz model

g(t, x) = ǫ0ω
2
p/ν0 e−t/2τ sin(ν0t)

(or P̈ +
1

τ
Ṗ + ω2

0P = ǫ0ω
2
pE)
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Background Dielectric Parameters of Interest

Frequency Domain

Converting to frequency domain via Fourier transforms

D̂ = ǫ(ω)Ê

Debye model

ǫ(ω) = ǫ∞ +
ǫs − ǫ∞
1 + iωτ

+
σ

iωǫ0

Cole-Cole model

ǫ(ω) = ǫ∞ +
ǫs − ǫ∞

1 + (iωτ)1−α
+

σ

iωǫ0
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Cole-Cole and Debye Models Cole-Cole and Debye Models

Multi-pole models

In general there are multiple mechanisms at various scales that account for
polarization. To attempt to account for several of these over a range of
frequencies, researchers tend to use multi-pole models:

Multi-pole Debye model:

ǫ(ω)D = ǫ∞ +

n
∑

m=1

∆ǫm

1 + iωτm
+

σ

iωǫ0

Multi-pole Cole-Cole model:

ǫ(ω)CC = ǫ∞ +

n
∑

m=1

∆ǫm

1 + (iωτm)(1−αm)
+

σ

iωǫ0
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Cole-Cole and Debye Models Dry skin data
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Figure: Real part of ǫ(ω), ǫ, or the permittivity.
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Cole-Cole and Debye Models Dry skin data
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Figure: “Imaginary part” of ǫ(ω), σ, or the conductivity.
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Cole-Cole and Debye Models Distributions

Distributions of Parameters

To account for the possible effect of multiple parameter sets ν, consider

h(t, x;F ) =

∫

N

g(t, x; ν)dF (ν),

where N is some admissible set and F ∈ P(N ).
Then the polarization becomes:

P(t, x) =

∫ t

0
h(t − s, x)E(s, x)ds.

Motivation: match data even better than multi-pole Cole-Cole, and more
efficient to simulate.
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Inverse Problems

Two Approaches

We will consider the problem of determining the distribution of dielectric
parameters which describe a material by using the following as data:

Complex permittivity (frequency-domain)

Electric field (time-domain)

Nathan Gibson (OSU-Math) Approximating Dispersive Mechanisms Oct 2008 16 / 45



Inverse Problems Frequency-domain Inverse Problem

Inverse Problem for F

Given data {ǫ̂}j we seek to determine a probability measure F ∗, such
that

F ∗ = min
F∈P(N )

J (F ),

where, for example,

J (F ) =
∑

j

[ǫ(ωj ;F ) − ǫ̂j ]
2 .

As ǫ(ω) is complex, we define e = [R(ǫ(ωj)),R(ǫ(ωj )iωjǫ0)] and
minimize the ℓ2-norm of the relative error between e(F ) and ê.

Given a trial distribution Fk we compute ǫ(ωj ;Fk) and test J (Fk),
then update Fk+1 as necessary.
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Inverse Problems Frequency-domain Inverse Problem

Monte Carlo Simulations

To compute ǫ(ω;Fk) we perform N Monte Carlo (MC) simulations.

Each MC simulation consists of drawing trial values of one or more of
the following according to the definition of the distribution F :
ǫ∞ℓ

, ∆ǫℓ, τℓ, σℓ

We then compute

ǫ(ω)ℓ = ǫ∞ℓ
+

∆ǫℓ

1 + (iωτℓ)
+

σℓ

iωǫ0

The term ǫ(ω;F ) is simply computed as the sample mean of the
ǫ(ω;F )ℓ,

ǫ(ω)DD =
1

N

N
∑

ℓ=1

ǫ(ω)ℓ.
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Inverse Problems Frequency-domain Inverse Problem

Convergence of MC

We need to select N (the number of MC simulations in the computation
of ǫ(ω)DD) sufficiently large so as to reduce variability.
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Figure: This figure shows five random plots of conductivity for each of N =
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Inverse Problems Frequency-domain Inverse Problem

Multi-pole Example

Consider

ǫ(ω)ℓ = ǫ∞ +

n
∑

m=1

∆ǫmℓ

1 + (iωτmℓ
)

+
σ

iωǫ0

For each pole m, we randomly sample each ∆ǫmℓ
and τmℓ

where

τmℓ
∼ U [(1 − am)τm, (1 + bm)τm] ,

and
∆ǫmℓ

∼ U [(1 − cm)∆ǫm, (1 + dm)∆ǫm]

for some given “reference values” of τm and ∆ǫm.

Thus, F is determined by am, bm, cm and dm, i.e., they are the values
of interest in our inverse problem.
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Inverse Problems Frequency-domain Inverse Problem

Dry Skin Problem

We use complex permittivity measurements from [GLG96] describing
dry skin as data.
We use the estimates from [GLG96] for ǫ∞, σ, τm and ∆ǫm as our
“reference values”.
The constraints on the distribution parameters were

a1 ∈ [0, 1] b1 ∈ [0, 1]
a2 ∈ [.5, 1.5] b2 ∈ [1, 2]
c1 ∈ [0, 1] d1 ∈ [0, 1]
c2 ∈ [0, 1] d2 ∈ [0, 1]

The results from DIRECT (global constrained optimization) were

a1 = 0.1337 b1 = 0.6646
a2 = 1.0000 b2 = 1.7840
c1 = 0.4630 d1 = 0.5000
c2 = 0.5988 d2 = 0.4630

J = 12.1945
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Inverse Problems Frequency-domain Inverse Problem
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Figure: Uniform distributions for ∆ǫ values in multi-pole Debye model for dry
skin.
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Inverse Problems Frequency-domain Inverse Problem
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Figure: Uniform distributions for τ values in multi-pole Debye model for dry skin.
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Inverse Problems Frequency-domain Inverse Problem
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Figure: Real part of ǫ(ω), σ, or the permittivity. Model A refers to the Debye
model with distributions only on τ . Model B refers to the Debye model with
distributions on both τ and ∆ǫ. Note: U156 = 18.0443,
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Inverse Problems Frequency-domain Inverse Problem
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Figure: The relative costs between Model A and the true data and between
Model B and the true data. Model A refers to the Debye model with distributions
only on τ . Model B refers to the Debye model with distributions on both τ and
∆ǫ.
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Inverse Problems Frequency-domain Inverse Problem

Comments on Optimization

Levenberg-Marquardt failed to find a local minimum.

In addition, programs such as fminsearch and fmincon

(fminsearch subject to a set of constraints) were also tried.

This difficulty was mentioned in [GLG96].

The randomness of the inverse problem implies that it is ill-posed;
gradient-based algorithms will often choose a non-descent direction.

Methods for implementation of such local minimum searches is an
area which should be explored further.
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Inverse Problems Frequency-domain Inverse Problem

To compare the time-domain response of each model of dry skin (Debye,
Cole-Cole, and Distributed Debey), we simulate a broad-band pulse
through the materials.
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Figure: The top plot shows the value of the electric field at a fixed point in space
as time varies. The bottom shows the FFT of the two signals.
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Inverse Problems Frequency-domain Inverse Problem
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Figure: Forward simulations with different distributions of dielectric parameters.
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Inverse Problems Time-domain Inverse Problem

Inverse Problem for F

Given data {Ê}j we seek to determine a probability measure F ∗, such
that

F ∗ = min
F∈P(N )

J (F ),

where, for example,

J (F ) =
∑

j

(

E (0, tj ;F ) − Êj

)2
.

Given a trial distribution Fk we compute ǫ(ωj ;Fk) and test J (Fk),
then update Fk+1 as necessary.

Need a (fast) (numerical) method for computing E (x , t;F ).
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Inverse Problems Time-domain Inverse Problem

Stability of Inverse Problem

Continuity of F → (E , Ė ) =⇒ continuity of F → J (F )

Compactness of N =⇒ compactness of P(N ) with respect to the
Prohorov metric

Therefore, a minimum of J (F ) over P(N ) exists
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Inverse Problems Time-domain Inverse Problem

1D Example
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E(t,z)

Js(t, z) = δ0(z) sin(ωt)I[0,tf ](t)
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Inverse Problems Time-domain Inverse Problem

Numerical Discretization

ǫ
∂E

∂t
= −∂H

∂x
− σE − dP

dt

µ
∂H

∂t
= −∂E

∂x

P(t, x) =

∫

N

∫ t

0
g(t − s, x; ν)E (s, x)ds dF (ν).

Second order FEM in space

piecewise linear splines

Second order FD in time

Crank-Nicholson (P)
Central differences (E )
en → pn → en+1 → pn+1 → · · ·

Use quadrature (trapezoidal) for distribution
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Inverse Problems Time-domain Inverse Problem

Discrete Distribution Example

Mixture of two Debye materials with τ1 and τ2

Total polarization a weighted average

P = α1P1(τ1) + α2P2(τ2)

Corresponds to the discrete probability distribution

dF (τ) = [α1δ(τ1) + α2δ(τ2)] dτ
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Inverse Problems Time-domain Inverse Problem

Discrete Distribution Inverse Problem

Assume the proportions α1 and α2 = 1 − α1 are known.

Define the following least squares optimization problem:

min
(τ1,τ2)

J = min
(τ1,τ2)

∑

j

∣

∣

∣
E (tj , 0; (τ1, τ2)) − Êj

∣

∣

∣

2
,

where Êj is synthetic data generated using (τ∗
1 , τ∗

2 ) in our simulation
routine.
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Inverse Problems Time-domain Inverse Problem

Discrete Distribution J using 106Hz
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The solid line above the surface represents the curve of constant
τ̃ := α1τ1 + (1 − α1)τ2. Note: ωτ̃ ≈ .15 < 1.
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Inverse Problems Time-domain Inverse Problem

Inverse Problem Results 106Hz

τ1 τ2 τ̃

Initial 3.95000e-8 1.26400e-8 2.60700e-8
LM 3.19001e-8 1.55032e-8 2.37016e-8
Final 3.16039e-8 1.55744e-8 2.37016e-8
Exact 3.16000e-8 1.58000e-8 2.37000e-8

Levenberg-Marquardt converges to curve of constant τ̃

Traversing curve results in accurate final estimates

Nathan Gibson (OSU-Math) Approximating Dispersive Mechanisms Oct 2008 36 / 45



Inverse Problems Time-domain Inverse Problem

Discrete Distribution J using 1011Hz
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The solid line above the surface represents the curve of constant
λ̃ := 1

cτ̃ = α1
cτ1

+ α2
cτ2

. Note: ωτ̃ ≈ 15000 > 1.
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Inverse Problems Time-domain Inverse Problem

Inverse Problem Results 1011Hz

τ1 τ2 λ̃

Initial 3.95000e-8 1.26400e-8 0.174167
LM 4.08413e-8 1.41942e-8 0.158333
Final 3.16038e-8 1.57991e-8 0.158333
Exact 3.16000e-8 1.58000e-8 0.158333

Levenberg-Marquardt converges to curve of constant λ̃

Traversing curve results in accurate final estimates
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Inverse Problems Time-domain Inverse Problem

Log-Normal Distribution of τ

Gaussian distribution of log(τ) with mean µ and with standard deviation σ:

dF (τ ; µ, σ) =
1√

2πσ2

1

ln 10

1

τ
exp

(

− (log τ − µ)2

2σ2

)

dτ,

Corresponding inverse problem:

min
q=(µ,σ)

∑

j

∣

∣

∣
E (tj , 0; (µ, σ)) − Êj

∣

∣

∣

2

.
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Inverse Problems Time-domain Inverse Problem
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Shown are the initial density function, the minimizing density function and
the true density function (the latter two being practically identical).
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Inverse Problems Time-domain Inverse Problem

Bi-gaussian Distribution of log τ

Bi-gaussian distribution with means µ1 and µ2 and with standard deviations
σ1 and σ2:

dF (τ) = α1dF̂ (τ ; µ1, σ1) + (1 − α1)dF̂ (τ ; µ2, σ2),

where

dF̂ (τ ; µ, σ) =
1√

2πσ2

1

ln 10

1

τ
exp

(

− (log τ − µ)2

2σ2

)

dτ,

Corresponding inverse problem:

min
q=(µ1,σ1,µ2,σ2)

∑

j

∣

∣

∣
|E (tj , 0; q)| − |Êj |

∣

∣

∣

2

.
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Inverse Problems Time-domain Inverse Problem

Bi-gaussian Results with 106Hz

case µ1 σ1 µ2 σ2 τ̃
Initial 1.58001e-7 0.036606 3.16002e-9 0.0571969 8.1201e-8
µ1,µ2 4.27129e-8 0.036606 4.24844e-9 0.0571969 2.36499e-8
Final 3.09079e-8 0.0136811 1.63897e-8 0.0663628 2.37978e-8
Exact 3.16000e-8 0.0457575 1.58000e-8 0.0457575 2.37957e-8

Levenberg-Marquardt converges to curve of constant τ̃

Traversing curve results in accurate final estimates

Note: for this continuous distribution,

τ̃ =

∫

T

τdF (τ).
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Bi-gaussian Results with 1011Hz

case µ1 σ1 µ2 σ2 λ̃
Initial 1.58001e-7 0.036606 3.16002e-9 0.0571969 0.538786
µ1,µ2 1.58001e-7 0.036606 1.12595e-8 0.0571969 0.158863
Final 3.23914e-8 0.0366059 1.56020e-8 0.0571968 0.158863
Exact 3.16000e-8 0.0457575 1.58000e-8 0.0457575 0.158863

Levenberg-Marquardt converges to curve of constant λ̃

Traversing curve results in accurate final estimates

Note: for this continuous distribution,

λ̃ =

∫

T

1

cτ
dF (τ).
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Comments on Time-domain Inverse Problems

We have shown well-posedness of the problem for determining
distributions of dielectric parameters

Our estimation methods worked well for discrete distributions

Our estimation methods worked well for the continuous uniform
distribution and gaussian distributions

We are currently only able to determine the means in the bi-gaussian
distributions, the data is relatively insensitive to the standard
deviations
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Homogenization

A good fit when λ̃ (or τ̃) is constant suggests using a single τ , even
for the bi-gaussian case

This modeling approach concludes that the “effective” parameter
should be τ̃ if ωτ < 1, else 1/cλ̃

We have also considered a traditional homogenization method based
on “periodic unfolding” (See [BBC+06] for details)

This approach allows us to use information about the periodic
structure, i.e., hexagonal cells.
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