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Summary from Last Time

Summary from Last Time

Unconstrained Optimization
Nonlinear Least Squares

Parameter ID Problem

Sample Problem:

u′′ + cu′ + ku = 0; u(0) = u0; u
′(0) = 0 (1)

Assume data {uj}M
j=0 is given for some times tj on the interval [0,T ]. Find

x=[c , k]T such that the following objective function is minimized:

f (x) =
1

2

M∑
j=1

|u(tj ; x)− uj |2 .
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Summary from Last Time

Summary Continued

Update step
xk+1 = xk + sk

Newton’s Method – quadratic model

Gauss-Newton – neglect 2nd order terms

Steepest Descent – always descent direction

Levenberg-Marquardt – like a weighted average of GN and SD with
parameter ν
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Summary from Last Time

Summary of Methods

Newton:

mN
k (x) = f (xk) +∇f (xk)

T (x − xk) +
1

2
(x − xk)

T∇2f (xk)(x − xk)

Gauss-Newton:

mGN
k (x) = f (xk) +∇f (xk)

T (x − xk) +
1

2
(x − xk)

TR ′(xk)
TR ′(xk)(x − xk)

Steepest Descent:

mSD
k (x) = f (xk) +∇f (xk)

T (x − xk) +
1

2
(x − xk)

T 1

λk
I (x − xk)

Levenberg-Marquardt:

mLM
k (x) = f (xk)+∇f (xk)

T (x−xk)+
1

2
(x−xk)

T
(
R ′(xk)

TR ′(xk) + νk I
)
(x−xk)

0 = ∇mk(x) =⇒ Hksk = −∇f (xk)
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Summary from Last Time

Levenberg-Marquardt Idea

If iterate is not close enough to minimizer so that GN does not give a
descent direction, increase ν to take more of a SD direction.

As you get closer to minimizer, decrease ν to take more of a GN step.

For zero-residual problems, GN converges quadratically (if at all)
SD converges linearly (guaranteed)
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Summary from Last Time

LM Alternative Perspective

Approximate Hessian may not be positive definite (or
well-conditioned), increase ν to add regularity.

As you get closer to minimizer, Hessian will become positive definite.
Decrease ν as less regularization is necessary.

Regularized problem is “nearby problem”, want to solve actual
problem as soon as feasible.
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Outline

Line Search (Armijo Rule)

Damped Gauss-Newton
LMA

Levenberg-Marquardt Parameter

Polynomial Models

Trust Region

Changing TR Radius
Changing LM Parameter
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Line Search

Step Length

Steepest Descent Method

We define the steepest descent direction to be dk = −∇f (xk). This
defines a direction but not a step length.

We define the Steepest Descent update step to be sSD
k = λkdk for

some λk > 0.

We would like to choose λk so that f (x) decreases sufficiently.

If we ask simply that
f (xk+1) < f (xk)

Steepest Descent might not converge.
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Line Search Sufficient Decrease

Predicted Reduction

Consider a linear model of f (x)

mk(x) = f (xk) +∇f (xk)T (x − xk).

Then the predicted reduction using the Steepest Descent step
(xk+1 = xk − λk∇f (xk)) is

pred = mk(xk)−mk(xk+1) = λk‖∇f (xk)‖2.

The actual reduction in f is

ared = f (xk)− f (xk+1).
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Line Search Sufficient Decrease

Sufficient Decrease

We define a sufficient decrease to be when

ared ≥ α pred ,

where α ∈ (0, 1) (e.g., 10−4 or so).
Note: α = 0 is simple decrease.
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Line Search Armijo Rule

Armijo Rule

We can define a strategy for determining the step length in terms of a
sufficient decrease criteria as follows:
Let λ = βm, where β ∈ (0, 1) (think 1

2) and m ≥ 0 is the smallest integer
such that

ared > α pred ,

where α ∈ (0, 1).
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Line Search Armijo Rule

Line Search

The Armijo Rule is an example of a line search:
Search on a ray from xk in direction of locally decreasing f .

Armijo procedure is to start with m = 0 then increment m until
sufficient decrease is achieved, i.e., λ = βm = 1, β, β2, . . .

This approach is also called “backtracking” or performing “pullbacks”.

For each m a new function evaluation is required.
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Line Search Damped Gauss-Newton

Damped Gauss-Newton

Armijo Rule applied to the Gauss-Newton step is called the Damped
Gauss-Newton Method.

Recall

dGN = −
(
R ′(x)TR ′(x)

)−1
R ′(x)TR(x).

Note that if R ′(x) has full column rank, then

0 > ∇f (x)TdGN =

−
(
R ′(x)TR(x)

)T (
R ′(x)TR ′(x)

)−1
R ′(x)TR(x)

so the GN direction is a descent direction.
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Line Search Damped Gauss-Newton

Damped Gauss-Newton Step

Thus the step for Damped Gauss-Newton is

sDGN = βmdGN

where β ∈ (0, 1) and m is the smallest non-negative integer to guarantee
sufficient decrease.
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Line Search LMA

Levenberg-Marquardt-Armijo

If R ′(x) does not have full column rank, or if the matrix R ′(x)TR ′(x)
may be ill-conditioned, you should be using Levenberg-Marquardt.

The LM direction is a descent direction.

Line search can be applied.

Can show that if νk = O(‖R(xk)‖) then LMA converges quadratically
for (nice) zero residual problems.
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Line Search

Numerical Example

Recall
u′′ + cu′ + ku = 0; u(0) = u0; u

′(0) = 0.

Let the true parameters be x∗ = [c , k]T = [1, 1]T . Assume we have
M = 100 data uj from equally spaced time points on [0, 10].

We will use the initial iterate x0 = [3, 1]T with Steepest Descent,
Gauss-Newton and Levenberg-Marquardt methods using the Armijo
Rule.
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Line Search
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Line Search
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Line Search
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Line Search
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Iterations
Pullbacks
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Levenberg-Marquardt Parameter

Word of Caution for LM

Note that blindly increasing ν until a sufficient decrease criteria is
satisfied is NOT a good idea (nor is it a line search).

Changing ν changes direction as well as step length.

Increasing ν does insure your direction is descending.

But, increasing ν too much makes your step length small.
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Levenberg-Marquardt Parameter
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Levenberg-Marquardt Parameter
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Polynomial Models

Line Search Improvements

Step length control with polynomial models

If λ = 1 does not give sufficient decrease, use f (xk), f (xk + d) and
∇f (xk) to build a quadratic model of

ξ(λ) = f (xk + λd)

Compute the λ which minimizes model of ξ.

If this fails, create cubic model.

If this fails, switch back to Armijo.

Exact line search is (usually) not worth the cost.
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Trust Region Methods

Trust Region Methods

Let ∆ be the radius of a ball about xk inside which the quadratic
model

mk(x) = f (xk) +∇f (xk)T (x − xk)

+
1

2
(x − xk)THk(x − xk)

can be “trusted” to accurately represent f (x).

∆ is called the trust region radius.

T (∆) = {x | ‖x − xk‖ ≤ ∆} is called the trust region.
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Trust Region Methods

Trust Region Problem

We compute a trial solution xt , which may or may not become our
next iterate.

We define the trial solution in terms of a trial step xt = xk + st .

The trial step is the (approximate) solution to the trust region
problem

min
‖s‖≤∆

mk(xk + s).

I.e., find the trial solution in the trust region which minimizes the
quadratic model of f .
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Trust Region Methods Changing Trust Region Radius

Changing Trust Region Radius

Test the trial solution xt using predicted and actual reductions.

If µ = ared/pred too low, reject trial step and decrease trust region
radius.

If µ sufficiently high, we can accept the trial step, and possibly even
increase the trust region radius (becoming more aggressive).
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Trust Region Methods

Exact Solution to TR Problem

Theorem

Let g ∈ RN and let A be a symmetric N × N matrix. Let

m(s) = gT s + sTAs/2.

Then a vector s is a solution to

min
‖s‖≤∆

m(s)

if and only if there is some ν ≥ 0 such that

(A + νI )s = −g

and either ν = 0 or ‖s‖ = ∆.
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Trust Region Methods LM as a TRM

LM as a TRM

Instead of controlling ∆ in response to µ = ared/pred , adjust ν.

Start with ν = ν0 and compute xt = xk + sLM .

If µ = ared/pred too small, reject trial and increase ν. Recompute
trial (only requires a linear solve).

If µ sufficiently high, accept trial and possibly decrease ν (maybe to
0).

Once trial accepted as an iterate, compute R, f , R ′, ∇f and test
‖∇f ‖ for termination.
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Trust Region Methods LM as a TRM
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Trust Region Methods LM as a TRM
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Summary

Summary

If Gauss-Newton fails, use Levenberg-Marquardt for low-residual
nonlinear least squares problems.

Achieves global convergence expected of Steepest Descent, but limits
to quadratically convergent method near minimizer.

Use either a trust region or line search to ensure sufficient decrease.

Can use trust region with any method that uses quadratic model of f .
Can only use line search for descent directions.
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Linear Least Squares

Consider A ∈ RM×N and b ∈ RM , we wish to find x ∈ RN such that

Ax = b.

In the case when M = N and A−1 exists, the unique solution is given by

x = A−1b.

For all other cases, if A is full rank, a solution is given by

x = A+b

where A+ = (ATA)−1AT is the (Moore-Penrose) psuedoinverse of A. This
solution is known as the (linear) least squares solution because it
minimizes the `2 distance between the range of A and the RHS b

x = argmin‖b − Ax‖2.
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Linear Least Squares

Can also be written as the solution to the normal equation

ATAx = ATb.

Corollary: There exists a unique least squares solution to Ax = b iff A has
full rank.
However, there may be (numerical) problems if A is “close” to
rank-deficient, i.e., ATA is close to singular.
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Linear Least Squares

Regularization

One can make ATA well-posed or better conditioned by adding on a
well-conditioned matrix, e.g., αI , α > 0 (Tikhonov Regularization). Thus
we may solve

(ATA + αI )x = ATb

or equivalently
x = argmin‖b − Ax‖2 + α‖x‖2

where we have added a penalty function.
Of course, now we are solving a different (nearby) problem; this is a
trade-off between matching the data (b) and prefering a particular type of
solution (e.g., minimum norm).
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Statistical Estimation

Linear Least Squares with Uncertainty

Consider solving
AX = B − N

where now X ,B,N are random variables with N ∼ N (~0,CN) representing
additive Gaussian white noise and we expect the solution X to behave
X ∼ N (~0,CX ) (prior distribution). For any given realization of B we wish
to find the expected value of X under uncertainty governed by N.
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Statistical Estimation

Maximum Likelihood Estimator

The maximum likelihood estimator answers question: “which value of X is
most likely to produce the measured data B?”

xMLE = argmaxp(b|x) = argmaxlogp(b|x)

where

p(b|x) = c exp

(
−1

2
(b − Ax)TC−1

N (b − Ax)

)
and

logp(b|x) = −1

2
(b − Ax)TC−1

N (b − Ax) + c̃
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Statistical Estimation

The maximum occurs when

0 =
d

dx
logp(b|x) = ATC−1

N (b − Ax)

or
ATC−1

N Ax = ATC−1
N b.

Note that solution does not depend on assumed distribution for X (ignores
prior). If we assume that the error i.i.d., CN = σ2

N I , then

ATAx = ATb

and we get exactly the normal equations. Thus if you use the least squares
solution, you are assuming i.i.d, additive Gaussian white noise.
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Statistical Estimation

Weighted Linear Least Squares

If this is not a good assumption, don’t use lsq. For instance, if CN = γ2Γ,
Γ spd, then xMLE solves

ATΓ−1Ax = ATΓ−1b

or
min

x
‖b − Ax‖Γ

otherwise known as weighted least squares.
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Statistical Estimation

Maximum a Posteriori Estimator

MAP directly answers the question: “given observation b what is the most
likely x?” Consider again

AX = B − N

with N ∼ N (~0,CN) and X ∼ N (~0,CX ) (prior distribution). Applying
Bayes’ Law

p(x |b) =
p(b|x)p(x)

p(b)

and taking logs on both sides gives

logp(x |z) = −1

2
(b − Ax)TC−1

N (b − Ax)− frac12xTC−1
X x + c̃ .

Differentiating wrt x implies xMAP solves

(ATC−1
N A + C−1

x )x = ATC−1
N b.
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Statistical Estimation

Tikhonov Regularization (Again)

(ATC−1
N A + C−1

x )x = ATC−1
N b.

Assuming CN = σ2
N I and CX = σ2

X I , then(
ATA +

(
σN

σX

)2

I

)
x = ATb

which are exactly the Tikhonov regularized normal equations with

α =

(
σN

σX

)2

representing a signal-to-noise ratio (trade-off).
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