Prof. Nathan L. Gibson

Department of Mathematics

Oregon State

UNIVERSITY

Applied Math and Computation Seminar
October 28, 2011




@ Unconstrained Optimization
o Nonlinear Least Squares
o Parameter ID Problem

Sample Problem:
u" + cu' + ku = 0; u(0) = up; u’(0) =0 (1)

Assume data {uj-}j"i0 is given for some times t; on the interval [0, T]. Find
=[c, k]T such that the following objective function is minimized:
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Update step
Xk4+1 = Xk + Sk

@ Newton’'s Method — quadratic model

o Gauss-Newton — neglect 2nd order terms

@ Steepest Descent — always descent direction

@ Levenberg-Marquardt — like a weighted average of GN and SD with
parameter v



@ Newton:
my(x) = () + V()T (x — x) + %(x — xk) TV F(xi ) (x — xx)

@ Gauss-Newton: .
mN(x) = f(x) + V()T (x — x) + E(X — %) TR () TR () (x — xx)

@ Steepest Descent:

mpP(x) = f(xk) + VF(x) " (x — xx) + %(X - xk)T)\il(x — Xk)
k

@ Levenberg-Marquardt:

miM(x) = f(xk)—i—Vf(Xk)T(X—Xk)—l—%(x—xk)T(R’(xk)TR'(xk) + il ) (x—xx)
0= mG(X) — Hsi = —Vf(Xk)



o If iterate is not close enough to minimizer so that GN does not give a
descent direction, increase v to take more of a SD direction.

@ As you get closer to minimizer, decrease v to take more of a GN step.

o For zero-residual problems, GN converges quadratically (if at all)
e SD converges linearly (guaranteed)



@ Approximate Hessian may not be positive definite (or
well-conditioned), increase v to add regularity.

@ As you get closer to minimizer, Hessian will become positive definite.
Decrease v as less regularization is necessary.

@ Regularized problem is “nearby problem”, want to solve actual
problem as soon as feasible.



@ Line Search (Armijo Rule)

o Damped Gauss-Newton
e LMA

@ Levenberg-Marquardt Parameter
@ Polynomial Models

@ Trust Region

o Changing TR Radius
o Changing LM Parameter



Steepest Descent Method

@ We define the steepest descent direction to be dx = —Vf(xx). This
defines a direction but not a step length.

@ We define the Steepest Descent update step to be s,fD = Ady for
some Ax > 0.

@ We would like to choose A\ so that f(x) decreases sufficiently.
o If we ask simply that
f (1) < Fx)

Steepest Descent might not converge.



Consider a linear model of f(x)
mi(x) = F(x) + VF(xi) T (x = x).

Then the predicted reduction using the Steepest Descent step
(Xk+1 = Xk — )\ka(Xk)) is

pred = mk(xk) — mk(xk+1) = )\k||Vf(Xk)||2
The actual reduction in f is

ared = f(xx) — f(Xks1)-



We define a sufficient decrease to be when
ared > « pred,

where o € (0,1) (e.g., 10* or s0).
Note: o = 0 is simple decrease.



We can define a strategy for determining the step length in terms of a
sufficient decrease criteria as follows:
Let A = 3™, where 5 € (0,1) (think %) and m > 0 is the smallest integer
such that

ared > « pred,

where a € (0,1).



@ The Armijo Rule is an example of a line search:
Search on a ray from xi in direction of locally decreasing f.

@ Armijo procedure is to start with m = 0 then increment m until
sufficient decrease is achieved, i.e., A\=3"=1,83,3?,...

@ This approach is also called “backtracking” or performing “pullbacks”.

@ For each m a new function evaluation is required.



@ Armijo Rule applied to the Gauss-Newton step is called the Damped
Gauss-Newton Method.

@ Recall
doN = — (RI(X)TR/(X)>_1 R'(x)TR(x).

@ Note that if R’(x) has full column rank, then
0> VF(x)Td®N =
T -1
- (RXTR() (RXTR(x)  R(x)TR()

so the GN direction is a descent direction.



Thus the step for Damped Gauss-Newton is

SDGN _ ,BdeN

where 3 € (0,1) and m is the smallest non-negative integer to guarantee
sufficient decrease.



e If R'(x) does not have full column rank, or if the matrix R'(x)T R'(x)
may be ill-conditioned, you should be using Levenberg-Marquardt.

@ The LM direction is a descent direction.
@ Line search can be applied.

@ Can show that if v, = O(||R(xx)||) then LMA converges quadratically
for (nice) zero residual problems.



@ Recall
u" + cu' + ku = 0; u(0) = up; u'(0) = 0.
@ Let the true parameters be x* = [c, k]T = [1,1]". Assume we have
M = 100 data u; from equally spaced time points on [0, 10].

@ We will use the initial iterate xop = [3,1] " with Steepest Descent,

Gauss-Newton and Levenberg-Marquardt methods using the Armijo
Rule.



Line Search

Search Direction

sNeWton

Steepest Descent

0.6 =+ |evenberg—Marquardt
0.8 1 1.2 14 1.6 1.8 2
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Line Search

1.7

Iteration history

7/ /IS4
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5 Gauss-Newton with Armijo rule . Gauss-Newton with Armijo rule
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Gauss-Newton with Armijo rule Gauss-Newton with Armijo rule
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@ Note that blindly increasing v until a sufficient decrease criteria is
satisfied is NOT a good idea (nor is it a line search).

o Changing v changes direction as well as step length.
@ Increasing v does insure your direction is descending.

@ But, increasing v too much makes your step length small.



Levenberg-Marquardt Parameter

Levenberg—Marquardt step
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Levenberg-Marquardt Parameter

Levenberg—Marquardt step
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Step length control with polynomial models

@ If A =1 does not give sufficient decrease, use f(xx), f(xx + d) and
V£ (xk) to build a quadratic model of

E(N) = f(xk + \d)

@ Compute the A which minimizes model of &.
o If this fails, create cubic model.
@ If this fails, switch back to Armijo.

@ Exact line search is (usually) not worth the cost.



@ Let A be the radius of a ball about xi inside which the quadratic
model

mi(x) = F(xi) + VF(x) T (x — x)
+ %(X - xk)THk(x — Xk)

can be “trusted” to accurately represent f(x).
@ A is called the trust region radius.
o T(A) = {x] ||x — xk|]| < A} is called the trust region.



@ We compute a trial solution x¢, which may or may not become our
next iterate.

@ We define the trial solution in terms of a trial step x; = xx + s¢.
@ The trial step is the (approximate) solution to the trust region

problem

min my(xx + s).
lIsl<a ( )

l.e., find the trial solution in the trust region which minimizes the
quadratic model of f.



@ Test the trial solution x; using predicted and actual reductions.

o If = ared/pred too low, reject trial step and decrease trust region
radius.

o If u sufficiently high, we can accept the trial step, and possibly even
increase the trust region radius (becoming more aggressive).



Trust Region Methods

Exact Solution to TR Problem

Theorem
Let g € RN and let A be a symmetric N x N matrix. Let

m(s) =g’s+s"As/2.

Then a vector s is a solution to

min m(s)
Isll<A

if and only if there is some v > 0 such that

(A+vl)s=—g

and either v =0 or ||s|| = A.
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@ Instead of controlling A in response to p = ared/pred, adjust v.

@ Start with v = 1y and compute x; = x; + stM.

o If u = ared/pred too small, reject trial and increase v. Recompute
trial (only requires a linear solve).

o If p sufficiently high, accept trial and possibly decrease v (maybe to
0).

@ Once trial accepted as an iterate, compute R, f, R’, Vf and test

|IVf|| for termination.



LM as a TRM

Iteration history
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Newton Trust Region Newton Trust Region
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o If Gauss-Newton fails, use Levenberg-Marquardt for low-residual
nonlinear least squares problems.

o Achieves global convergence expected of Steepest Descent, but limits
to quadratically convergent method near minimizer.

@ Use either a trust region or line search to ensure sufficient decrease.

o Can use trust region with any method that uses quadratic model of f.
o Can only use line search for descent directions.
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L Linear Least Squares
Consider A € RM*N and b € RM, we wish to find x € RN such that
Ax = b.
In the case when M = N and A1 exists, the unique solution is given by
x=A"1bh.
For all other cases, if A is full rank, a solution is given by
x=A"h

where At = (AT A)7LAT is the (Moore-Penrose) psuedoinverse of A. This
solution is known as the (linear) least squares solution because it
minimizes the ¢, distance between the range of A and the RHS b

x = argmin||b — Ax||2.



Can also be written as the solution to the normal equation
ATAx = ATb.

Corollary: There exists a unique least squares solution to Ax = b iff A has
full rank.

However, there may be (numerical) problems if A is “close” to
rank-deficient, i.e., AT A'is close to singular.



One can make AT A well-posed or better conditioned by adding on a
well-conditioned matrix, e.g., al,« > 0 (Tikhonov Regularization). Thus
we may solve

(ATA+al)x=ATb

or equivalently
x = argmin||b — Ax||2 + «|x||2

where we have added a penalty function.

Of course, now we are solving a different (nearby) problem; this is a
trade-off between matching the data (b) and prefering a particular type of
solution (e.g., minimum norm).



Consider solving
AX=B-N

where now X, B, N are random variables with N ~ /\/'(6, Cn) representing
additive Gaussian white noise and we expect the solution X to behave

X ~ N(0, Cx) (prior distribution). For any given realization of B we wish
to find the expected value of X under uncertainty governed by N.



The maximum likelihood estimator answers question: “which value of X is
most likely to produce the measured data B?”

xmLE = argmaxp(b|x) = argmaxlogp(b|x)
where

p(blx) = cexp (—%(b —A)TCMb - Ax))

and
1
logp(b|x) = —5 (b~ AX)TCH (b — Ax) + ¢



The maximum occurs when
d
0 = —logp(blx) = ATC (b — Ax)

or
AT C ' Ax = AT CMb.

Note that solution does not depend on assumed distribution for X (ignores
prior). If we assume that the error i.i.d., Cy = 0%/, then

ATAx = ATh

and we get exactly the normal equations. Thus if you use the least squares
solution, you are assuming i.i.d, additive Gaussian white noise.



If this is not a good assumption, don't use Isq. For instance, if Cy = ~T,
I" spd, then xp g solves

ATr1ax=ATT"1p

or
min || b — Ax||r
X

otherwise known as weighted least squares.



MAP directly answers the question: “given observation b what is the most
likely x?" Consider again
AX=B—-N

with N ~ N(0, Cy) and X ~ N (0, Cx) (prior distribution). Applying

Bayes’ Law
p(blx)p(x)

p(xib) = P2

and taking logs on both sides gives
1
logp(x|z) = _E(b — Ax)TCt(b — Ax) — fracl2x C;'x + €.
Differentiating wrt x implies xyap solves

(ATCy'A+ Gl x = ATCy b



(ATCy A+ Chx = ATy b

Assuming Cy = o3/ and Cx = 0%/, then

2
(ATA + (U—"’> /) x=ATb
ox

which are exactly the Tikhonov regularized normal equations with

2
ON
a=|—
(UX)

representing a signal-to-noise ratio (trade-off).
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