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Unconstrained Optimization

Unconstrained Optimization

Minimize function f of N variables

I.e., find local minimizer x∗ such that

f (x∗) ≤ f (x) for all x near x∗

Different from constrained optimization

f (x∗) ≤ f (x) for all x ∈ U near x∗

Different from global minimizer

f (x∗) ≤ f (x) for all x (possibly in U)
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Unconstrained Optimization

Sample Problem

Parameter Identification
Consider

u′′ + cu′ + ku = 0; u(0) = u0; u
′(0) = 0 (1)

where u represents the motion of an unforced harmonic oscillator (e.g.,
spring). We may assume u0 is known, and data {uj}M

j=1 is given for some
times tj on the interval [0,T ].
Now we can state a parameter identification problem to be: find
x = [c , k]T such that the solution u(t) to (1) using parameters x is (as
close as possible to) uj when evaluated at times tj .
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Unconstrained Optimization Definitions

Objective Function

Consider the following formulation of the Parameter Identification problem:
Find x=[c , k]T such that the following objective function is minimized:

f (x) =
1

2

M∑
j=1

|u(tj ; x)− uj |2 .

This is an example of a nonlinear least squares problem.
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Unconstrained Optimization Definitions

Iterative Methods

An iterative method for minimizing a function f (x) usually has the
following parts:

Choose an initial iterate x0

For k = 0, 1, . . .

If xk optimal, stop.
Determine a search direction d
and a step size λ
Set xk+1 = xk + λd

Prof. Gibson (OSU) Gradient-based Methods for Optimization AMC 2011 6 / 40



Unconstrained Optimization Definitions

Convergence Rates

The sequence {xk}∞k=1 is said to converge to x∗ with rate p and rate
constant C if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖p

= C .

Linear: p = 1 and 0 < C < 1, such that error decreases.

Quadratic: p = 2, doubles correct digits per iteration.

Superlinear: If p = 1, C = 0. Faster than linear. Includes quadractic
convergence, but also intermediate rates.
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Unconstrained Optimization Necessary and Sufficient Conditions

Necessary Conditions

Theorem

Let f be twice continuously differentiable, and let x∗ be a local minimizer
of f . Then

∇f (x∗) = 0 (2)

and the Hessian of f , ∇2f (x∗), is positive semidefinite.

Recall A positive semidefinite means

xTAx ≥ 0 ∀x ∈ RN .

Equation (2) is called the first-order necessary condition.
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Unconstrained Optimization Necessary and Sufficient Conditions

Hessian

Let f : RN → R be twice continuously differentiable (C2), then

The gradient of f is

∇f =

[
∂f

∂x1
, · · · ,

∂f

∂xN

]T

The Hessian of f is

∇2f =


∂2f
∂x2

1
· · · ∂2f

∂x1∂xN

...
. . .

...
∂2f

∂xN∂x1
· · · ∂2f

∂x2
N
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Unconstrained Optimization Necessary and Sufficient Conditions

Sufficient Conditions

Theorem

Let f be twice continuously differentiable in a neighborhood of x∗, and let

∇f (x∗) = 0

and the Hessian of f , ∇2f (x∗), be positive semidefinite. Then x∗ is a local
minimizer of f .

Note: second derivative information is required to be certain, for instance,
if f (x) = x3.
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Newton’s Method

Quadratic Objective Functions

Suppose

f (x) =
1

2
xTHx − xTb

then we have that
∇2f (x) = H

and if H is symmetric (assume it is)

∇f (x) = Hx − b.

Therefore, if H is positive definite, then the unique minimizer x∗ is the
solution to

Hx∗ = b.
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Newton’s Method

Newton’s Method

Newton’s Method solves for the minimizer of the local quadratic model of
f about the current iterate xk given by

mk(x) = f (xk) +∇f (xk)T (x − xk) +
1

2
(x − xk)T∇2f (xk)(x − xk).

If ∇2f (xk) is positive definite, then the minimizer xk+1 of mk is the unique
solution to

0 = ∇mk(x) = ∇f (xk) +∇2f (xk)(x − xk). (3)
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Newton’s Method

Newton Step

The solution to (3) is computed by solving

∇2f (xk)sk = −∇f (xk)

for the Newton Step sN
k . Then the Newton update is defined by

xk+1 = xk + sN
k .

Note: the step sN
k has both direction and length. Variants of Newton’s

Method modify one or both of these.
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Newton’s Method

Standard Assumptions

Assume that f and x∗ satisfy the following

1 Let f be twice continuously differentiable and Lipschitz continuous
with constant γ

‖∇2f (x)−∇2f (y)‖ ≤ γ‖x − y‖.

2 ∇f (x∗) = 0.

3 ∇2f (x∗) is positive definite.
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Newton’s Method

Convergence Rate

Theorem

Let the Standard Assumptions hold. Then there exists a δ > 0 such that if
x0 ∈ Bδ(x

∗), the Newton iteration converges quadratically to x∗.

I.e., ‖ek+1‖ ≤ K‖ek‖2.

If x0 is not close enough, Hessian may not be positive definite.

If you start close enough, you stay close enough.
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Newton’s Method

Problems (and solutions)

Need derivatives

Use finite difference approximations

Needs solution of linear system at each iteration

Use iterative linear solver like CG
(Inexact Newton)

Hessians are expensive to find (and solve/factor)

Use chord (factor once) or Shamanskii
Use Quasi-Newton (update Hk to get Hk+1)
Use Gauss-Newton (first order approximate Hessian)
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Nonlinear Least Squares

Nonlinear Least Squares

Recall,

f (x) =
1

2

M∑
j=1

|u(tj ; x)− uj |2 .

Then for x = [c , k]T

∇f (x) =

[∑M
j=1

∂u(tj ;x)
∂c (u(tj ; x)− uj)∑M

j=1
∂u(tj ;x)

∂k (u(tj ; x)− uj)

]
= R ′(x)TR(x)

where R(x) = [u(t1; x)− u1, . . . , u(tM ; x)− uM ]T is called the residual

and R ′ij(x) = ∂Ri (x)
∂xj

.
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Nonlinear Least Squares

Approximate Hessian

In terms of the residual R, the Hessian of f becomes

∇2f (x) = R ′(x)TR ′(x) + R ′′(x)R(x)

where R ′′(x)R(x) =
∑M

j=1 rj(x)∇2rj(x) and rj(x) is the jth element of the
vector R(x).
The second order term requires the computation of M Hessians, each size
N × N. However, if we happen to be solving a zero residual problem, this
second order term goes to zero. One can argue that for small residual
problems (and good initial iterates) the second order term is neglibible.
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Gauss-Newton Method

Gauss-Newton Method

The equation defining the Newton step

∇2f (xk)sk = −∇f (xk)

becomes

R ′(xk)TR ′(xk)sk = −∇f (xk)

= −R ′(xk)TR(xk).

We define the Gauss-Newton step as the solution sGN
k to this equation.

You can expect close to quadratic convergence for small residual problems.
Otherwise, not even linear is guaranteed.
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Gauss-Newton Method

Numerical Example

Recall
u′′ + cu′ + ku = 0; u(0) = u0; u

′(0) = 0.

Let the true parameters be x∗ = [c , k]T = [1, 1]T . Assume we have
M = 100 data uj from equally spaced time points on [0, 10].

We will use the initial iterate x0 = [1.1, 1.05]T with Newton’s Method
and Gauss-Newton.

We compute gradients with forward differences, analytical 2× 2
matrix inverse, and use ode15s for time stepping the ODE.
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Gauss-Newton Method
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Gauss-Newton Method
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Gauss-Newton Method

Newton Gauss-Newton

k ||∇f (xk)|| f (xk) ||∇f (xk)|| f (xk)

0 2.330e+01 7.881e-01 2.330e+01 7.881e-01
1 6.852e+00 9.817e-02 1.767e+00 6.748e-03
2 4.577e-01 6.573e-04 1.016e-02 4.656e-07
3 3.242e-03 3.852e-08 1.844e-06 2.626e-13
4 4.213e-07 2.471e-13

Table: Parameter identification problem, locally convergent iterations. CPU time
Newton: 3.4s, Gauss-Newton: 1s.
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Gauss-Newton Method
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Gauss-Newton Method
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Gauss-Newton Method
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Gauss-Newton Method

Global Convergence

Newton direction may not be a descent direction (if Hessian not
positive definite).

Thus Newton (or any Newton-based method) may increase f if x0 not
close enough. Not globally convergent.

Globally convergent methods ensure (sufficient) decrease in f .

The steepest descent direction is always a descent direction.
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Steepest Descent Method

Steepest Descent Method

We define the steepest descent direction to be dk = −∇f (xk). This
defines a direction but not a step size.

We define the Steepest Descent update step to be sSD
k = λkdk for

some λk > 0.

We will talk later about ways of choosing λ.
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Steepest Descent Method
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Steepest Descent Method
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Steepest Descent Method
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Steepest Descent Method

Steepest Descent Comments

Steepest Descent direction is best direction locally.

The negative gradient is perpendicular to level curves.

Solving for sSD
k is equivalent to assuming ∇2f (xk) = I/λk .

In general you can only expect linear convergence.

Would be good to combine global convergence property of Steepest
Descent with superlinear convergence rate of Gauss-Newton.
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Levenberg-Marquardt Method

Levenberg-Marquardt Method

Recall the objective function

f (x) =
1

2
R(x)TR(x)

where R is the residual. We define the Levenberg-Marquardt update step
sLM
k to be the solution of(

R ′(xk)TR ′(xk) + νk I
)

sk = −R ′(xk)TR(xk)

where the regularization parameter νk is called the Levenberg-Marquardt
parameter, and it is chosen such that the approximate Hessian
R ′(xk)TR ′(xk) + νk I is positive definite.
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Levenberg-Marquardt Method
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Levenberg-Marquardt Method
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Levenberg-Marquardt Method

Levenberg-Marquardt Notes

Robust with respect to poor initial conditions and larger residual
problems.

Varying ν involves interpolation between GN direction (ν = 0) and
SD direction (large ν).

See

doc lsqnonlin

for MATLAB instructions for LM and GN.
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Levenberg-Marquardt Method

Levenberg-Marquardt Idea

If iterate is not close enough to minimizer so that GN does not give a
descent direction, increase ν to take more of a SD direction.

As you get closer to minimizer, decrease ν to take more of a GN step.

For zero-residual problems, GN converges quadratically (if at all)
SD converges linearly (guaranteed)
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Levenberg-Marquardt Method

LM Alternative Perspective

Approximate Hessian may not be positive definite (or
well-conditioned), increase ν to add regularity.

As you get closer to minimizer, Hessian will become positive definite
(by Standard Assumptions). Decrease ν, as less regularization is
necessary.

Regularized problem is “nearby problem”, want to solve actual
problem as soon as is feasible.
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Summary

Summary

Taylor series with remainder:

f (x) = f (xk) +∇f (xk)
T (x − xk) +

1

2
(x − xk)

T∇2f (ξ)(x − xk)

Newton:

mN
k (x) = f (xk) +∇f (xk)

T (x − xk) +
1

2
(x − xk)

T∇2f (xk)(x − xk)

Gauss-Newton:

mGN
k (x) = f (xk) +∇f (xk)

T (x − xk) +
1

2
(x − xk)

TR ′(xk)
TR ′(xk)(x − xk)

Steepest Descent:

mSD
k (x) = f (xk) +∇f (xk)

T (x − xk) +
1

2
(x − xk)

T 1

λk
I (x − xk)

Levenberg-Marquardt:

mLM
k (x) = f (xk)+∇f (xk)

T (x−xk)+
1

2
(x−xk)

T
(
R ′(xk)

TR ′(xk) + νk I
)
(x−xk)
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