Gradient-based Methods for Optimization. Part I.

Prof. Nathan L. Gibson

Department of Mathematics

Applied Math and Computation Seminar October 21, 2011

- Unconstrained Optimization
- Newton's Method
 - Inexact Newton
 - Quasi-Newton
- Nonlinear Least Squares
- Gauss-Newton Method
- Steepest Descent Method
- Levenberg-Marquardt Method

Unconstrained Optimization

- Minimize function f of N variables
- I.e., find *local minimizer* x* such that

 $f(x^*) \leq f(x)$ for all x near x^*

• Different from constrained optimization

 $f(x^*) \leq f(x)$ for all $x \in U$ near x^*

• Different from global minimizer

 $f(x^*) \leq f(x)$ for all x (possibly in U)

Parameter Identification

Consider

$$u'' + cu' + ku = 0; u(0) = u_0; u'(0) = 0$$
(1)

where *u* represents the motion of an unforced harmonic oscillator (e.g., spring). We may assume u_0 is known, and data $\{u_j\}_{j=1}^M$ is given for some times t_j on the interval [0, T]. Now we can state a *parameter identification* problem to be: find $x = [c, k]^T$ such that the solution u(t) to (1) using parameters x is (as close as possible to) u_j when evaluated at times t_j . Consider the following formulation of the Parameter Identification problem: Find $x=[c, k]^T$ such that the following objective function is minimized:

$$f(x) = \frac{1}{2} \sum_{j=1}^{M} |u(t_j; x) - u_j|^2.$$

This is an example of a *nonlinear least squares problem*.

An iterative method for minimizing a function f(x) usually has the following parts:

- Choose an initial iterate x₀
- For k = 0, 1, ...
 - If x_k optimal, **stop**.
 - Determine a search direction dand a step size λ
 - Set $x_{k+1} = x_k + \lambda d$

The sequence $\{x_k\}_{k=1}^{\infty}$ is said to converge to x^* with rate p and rate constant C if

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|^p} = C.$$

- Linear: p = 1 and 0 < C < 1, such that error decreases.
- **Quadratic**: p = 2, doubles correct digits per iteration.
- Superlinear: If p = 1, C = 0. Faster than linear. Includes quadractic convergence, but also intermediate rates.

Necessary Conditions

Theorem

Let f be twice continuously differentiable, and let x^* be a local minimizer of f. Then

$$\nabla f(x^*) = 0 \tag{2}$$

and the Hessian of f, $\nabla^2 f(x^*)$, is positive semidefinite.

Recall A positive semidefinite means

$$x^T A x \ge 0 \quad \forall x \in \mathbb{R}^N.$$

Equation (2) is called the *first-order necessary condition*.

Hessian

Let $f : \mathbb{R}^N \to \mathbb{R}$ be twice continuously differentiable (C^2), then • The gradient of f is

$$\nabla f = \left[\frac{\partial f}{\partial x_1}, \cdots, \frac{\partial f}{\partial x_N}\right]^T$$

• The **Hessian** of *f* is

$$\nabla^2 f = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_N} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_N \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_N^2} \end{bmatrix}$$

Sufficient Conditions

Theorem

Let f be twice continuously differentiable in a neighborhood of x^* , and let

 $\nabla f(x^*) = 0$

and the Hessian of f, $\nabla^2 f(x^*)$, be positive semidefinite. Then x^* is a local minimizer of f.

Note: second derivative information is required to be certain, for instance, if $f(x) = x^3$.

Quadratic Objective Functions

Suppose

$$f(x) = \frac{1}{2}x^T H x - x^T b$$

then we have that

$$\nabla^2 f(x) = H$$

and if H is symmetric (assume it is)

$$\nabla f(x) = Hx - b.$$

Therefore, if *H* is positive definite, then the unique minimizer x^* is the solution to

$$Hx^* = b.$$

Newton's Method solves for the minimizer of the *local quadratic model* of f about the current iterate x_k given by

$$m_k(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \nabla^2 f(x_k) (x - x_k).$$

If $\nabla^2 f(x_k)$ is positive definite, then the minimizer x_{k+1} of m_k is the unique solution to

$$0 = \nabla m_k(x) = \nabla f(x_k) + \nabla^2 f(x_k)(x - x_k).$$
(3)

The solution to (3) is computed by solving

$$\nabla^2 f(x_k) s_k = -\nabla f(x_k)$$

for the Newton Step s_k^N . Then the Newton update is defined by

$$x_{k+1} = x_k + s_k^N.$$

Note: the step s_k^N has both direction and length. Variants of Newton's Method modify one or both of these.

Assume that f and x^* satisfy the following

0 Let f be twice continuously differentiable and Lipschitz continuous with constant γ

$$\|\nabla^2 f(x) - \nabla^2 f(y)\| \le \gamma \|x - y\|.$$

- **3** $\nabla^2 f(x^*)$ is positive definite.

Theorem

Let the Standard Assumptions hold. Then there exists a $\delta > 0$ such that if $x_0 \in \mathcal{B}_{\delta}(x^*)$, the Newton iteration converges quadratically to x^* .

- I.e., $||e_{k+1}|| \le K ||e_k||^2$.
- If x_0 is not close enough, Hessian may not be positive definite.
- If you start close enough, you stay close enough.

Problems (and solutions)

Need derivatives

- Use finite difference approximations
- Needs solution of linear system at each iteration
 - Use iterative linear solver like CG (Inexact Newton)
- Hessians are expensive to find (and solve/factor)
 - Use chord (factor once) or Shamanskii
 - Use Quasi-Newton (update H_k to get H_{k+1})
 - Use Gauss-Newton (first order approximate Hessian)

Nonlinear Least Squares

Recall,

$$f(x) = \frac{1}{2} \sum_{j=1}^{M} |u(t_j; x) - u_j|^2.$$

Then for $x = [c, k]^T$

$$\nabla f(x) = \begin{bmatrix} \sum_{j=1}^{M} \frac{\partial u(t_j;x)}{\partial c} \left(u(t_j;x) - u_j \right) \\ \sum_{j=1}^{M} \frac{\partial u(t_j;x)}{\partial k} \left(u(t_j;x) - u_j \right) \end{bmatrix} = R'(x)^T R(x)$$

where $R(x) = [u(t_1; x) - u_1, \dots, u(t_M; x) - u_M]^T$ is called the *residual* and $R'_{ij}(x) = \frac{\partial R_i(x)}{\partial x_j}$.

In terms of the residual R, the Hessian of f becomes

$$\nabla^2 f(x) = R'(x)^T R'(x) + R''(x) R(x)$$

where $R''(x)R(x) = \sum_{j=1}^{M} r_j(x)\nabla^2 r_j(x)$ and $r_j(x)$ is the *j*th element of the vector R(x).

The second order term requires the computation of M Hessians, each size $N \times N$. However, if we happen to be solving a *zero residual problem*, this second order term goes to zero. One can argue that for *small residual problems* (and good initial iterates) the second order term is neglibible.

The equation defining the Newton step

$$\nabla^2 f(x_k) s_k = -\nabla f(x_k)$$

becomes

$$R'(x_k)^T R'(x_k) s_k = -\nabla f(x_k)$$
$$= -R'(x_k)^T R(x_k).$$

We define the Gauss-Newton step as the solution s_k^{GN} to this equation.

You can expect close to *quadratic* convergence for small residual problems. Otherwise, not even *linear* is guaranteed.

Numerical Example

Recall

$$u'' + cu' + ku = 0; u(0) = u_0; u'(0) = 0.$$

- Let the true parameters be $x^* = [c, k]^T = [1, 1]^T$. Assume we have M = 100 data u_j from equally spaced time points on [0, 10].
- We will use the initial iterate $x_0 = [1.1, 1.05]^T$ with Newton's Method and Gauss-Newton.
- We compute gradients with forward differences, analytical 2 × 2 matrix inverse, and use ode15s for time stepping the ODE.

Prof. Gibson (OSU)

Gradient-based Methods for Optimization

	Newton		Gauss-Newton	
k	$ \nabla f(x_k) $	$f(x_k)$	$ \nabla f(x_k) $	$f(x_k)$
0	2.330e+01	7.881e-01	2.330e+01	7.881e-01
1	6.852e+00	9.817e-02	1.767e+00	6.748e-03
2	4.577e-01	6.573e-04	1.016e-02	4.656e-07
3	3.242e-03	3.852e-08	1.844e-06	2.626e-13
4	4.213e-07	2.471e-13		

Table: Parameter identification problem, locally convergent iterations. CPU time Newton: 3.4s, Gauss-Newton: 1s.

- Newton direction may not be a descent direction (if Hessian not positive definite).
- Thus Newton (or any Newton-based method) may increase f if x₀ not close enough. Not globally convergent.
- Globally convergent methods ensure (sufficient) decrease in f.
- The steepest descent direction is always a descent direction.

Steepest Descent Method

- We define the steepest descent direction to be d_k = −∇f(x_k). This defines a direction but not a step size.
- We define the Steepest Descent update step to be s^{SD}_k = λ_kd_k for some λ_k > 0.
- We will talk later about ways of choosing λ .

Steepest Descent Method

Steepest Descent Comments

- Steepest Descent direction is best direction *locally*.
- The negative gradient is perpendicular to level curves.
- Solving for s_k^{SD} is equivalent to assuming $\nabla^2 f(x_k) = I/\lambda_k$.
- In general you can only expect *linear* convergence.
- Would be good to combine global convergence property of Steepest Descent with *superlinear* convergence rate of Gauss-Newton.

Levenberg-Marquardt Method

Recall the objective function

$$f(x) = \frac{1}{2}R(x)^T R(x)$$

where R is the residual. We define the Levenberg-Marquardt update step s_k^{LM} to be the solution of

$$\left(R'(x_k)^T R'(x_k) + \nu_k I\right) s_k = -R'(x_k)^T R(x_k)$$

where the *regularization parameter* ν_k is called the Levenberg-Marquardt parameter, and it is chosen such that the approximate Hessian $R'(x_k)^T R'(x_k) + \nu_k I$ is positive definite.

Levenberg-Marquardt Notes

- Robust with respect to poor initial conditions and larger residual problems.
- Varying ν involves interpolation between GN direction ($\nu = 0$) and SD direction (large ν).
- See

doc lsqnonlin

for MATLAB instructions for LM and GN.

Levenberg-Marquardt Idea

- If iterate is not close enough to minimizer so that GN does not give a descent direction, increase ν to take more of a SD direction.
- As you get closer to minimizer, decrease ν to take more of a GN step.
 - For zero-residual problems, GN converges quadratically (if at all)
 - SD converges linearly (guaranteed)

LM Alternative Perspective

- Approximate Hessian may not be positive definite (or well-conditioned), increase ν to add regularity.
- As you get closer to minimizer, Hessian will become positive definite (by Standard Assumptions). Decrease ν, as less regularization is necessary.
- Regularized problem is "nearby problem", want to solve actual problem as soon as is feasible.

Summary

• Taylor series with remainder:

$$f(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \nabla^2 f(\xi) (x - x_k)$$

Newton:

$$m_k^N(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \nabla^2 f(x_k) (x - x_k)$$

- Gauss-Newton: $m_k^{GN}(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T R'(x_k)^T R'(x_k) (x - x_k)$
- Steepest Descent:

$$m_{k}^{SD}(x) = f(x_{k}) + \nabla f(x_{k})^{T}(x - x_{k}) + \frac{1}{2}(x - x_{k})^{T}\frac{1}{\lambda_{k}}I(x - x_{k})$$

Levenberg-Marquardt:

$$m_{k}^{LM}(x) = f(x_{k}) + \nabla f(x_{k})^{T}(x-x_{k}) + \frac{1}{2}(x-x_{k})^{T} (R'(x_{k})^{T} R'(x_{k}) + \nu_{k} I)(x-x_{k})$$

- Levenberg, K., "A Method for the Solution of Certain Problems in Least-Squares", Quarterly Applied Math. 2, pp. 164-168, 1944.
- Marquardt, D., "An Algorithm for Least-Squares Estimation of Nonlinear Parameters", SIAM Journal Applied Math., Vol. 11, pp. 431-441, 1963.
- Moré, J. J., "The Levenberg-Marquardt Algorithm: Implementation and Theory", Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag, 1977.
- Kelley, C. T., "Iterative Methods for Optimization", Frontiers in Applied Mathematics 18, SIAM, 1999. http://www4.ncsu.edu/~ctk/matlab_darts.html.
- Wadbro, E., "Additional Lecture Material", Optimization 1 / MN1, Uppsala Universitet, http://www.it.uu.se/edu/course/homepage/opt1/ht07/.