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Unconstrained Optimization

Unconstrained Optimization

Minimize function f of N variables

I.e., find local minimizer x∗ such that

f (x∗) ≤ f (x) for all x near x∗

Different from constrained optimization

f (x∗) ≤ f (x) for all x ∈ U near x∗

Different from global minimizer

f (x∗) ≤ f (x) for all x (possibly in U)
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Unconstrained Optimization

Sample Problem

Parameter Identification
Consider

u′′ + cu′ + ku = 0; u(0) = u0; u′(0) = 0 (1)

where u represents the motion of an unforced harmonic oscillator (e.g.,
spring). We may assume u0 is known, and data {uj}Mj=1 is given for some
times tj on the interval [0,T ].
Now we can state a parameter identification problem to be: find
x = [c, k]T such that the solution u(t) to (1) using parameters x is (as
close as possible to) uj when evaluated at times tj .
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Unconstrained Optimization Definitions

Objective Function

Consider the following formulation of the Parameter Identification problem:
Find x=[c , k]T such that the following objective function is minimized:

f (x) =
1

2

M∑
j=1

|u(tj ; x)− uj |2 .

This is an example of a nonlinear least squares problem.
(Technically an ODE constrained optimization problem.)

Recall: the linear least squares problem is

min
x∈RN

1

2
‖Ax − b‖2

2. (2)

where
1

2
‖Ax − b‖2

2 =
1

2
xT (ATA)x − (ATb)T x +

1

2
‖b‖2

2 (3)
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Unconstrained Optimization Definitions

Iterative Methods

An iterative method for minimizing a function f (x) usually has the
following parts:

Choose an initial iterate x0

For k = 0, 1, . . .

If xk is (close enough to) optimal, stop.
Determine a search direction d
and a step size λ
Set xk+1 = xk + λd
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Unconstrained Optimization Definitions

Convergence Rates

The sequence {xk}∞k=1 is said to converge to x∗ with rate p and rate
constant C if

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖p

= C .

Linear: p = 1 and 0 < C < 1, such that error decreases.

Quadratic: p = 2, doubles correct digits per iteration.

Superlinear: If p = 1, C = 0. Faster than linear. Includes quadractic
convergence, but also intermediate rates.
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Unconstrained Optimization Definitions

Gradient and Hessian

Let f : RN → R be twice continuously differentiable (C2), then

The gradient of f is

∇f =

[
∂f

∂x1
, · · · , ∂f

∂xN

]T
The Hessian of f is

∇2f =


∂2f
∂x2

1
· · · ∂2f

∂x1∂xN
...

. . .
...

∂2f
∂xN∂x1

· · · ∂2f
∂x2

N
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Unconstrained Optimization Necessary and Sufficient Conditions

Necessary Conditions

Theorem

Let f be twice continuously differentiable, and let x∗ be a local minimizer
of f . Then

∇f (x∗) = 0 (4)

and the Hessian of f ,

∇2f (x∗), is positive semidefinite. (5)

Recall A positive semidefinite means

xTAx ≥ 0, ∀x ∈ RN .

Equation (4) is called the first-order necessary condition, including (6) we
have the second-order neccessary conditions.
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Unconstrained Optimization Necessary and Sufficient Conditions

Sufficient Conditions

Strict positivity of the second derivative allows one to be certain that there
exists a minimum, for instance, consider f (x) = x3 vs f (x) = x4.

Theorem

Let f be twice continuously differentiable in a neighborhood of x∗, and let

∇f (x∗) = 0

and the Hessian of f ,

∇2f (x∗), is positive definite. (6)

Then x∗ is a local minimizer of f .

These are the second-order sufficient conditions.
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Newton’s Method

Quadratic Objective Functions

Suppose

f (x) =
1

2
xTHx − gT x

(for example, from linear least squares

1

2
xT (ATA)x − (ATb)T x +

1

2
‖b‖2

2 (7)

with H = ATA, g = (ATb), and ignoring ‖b‖2
2), then we have that

∇f (x) = Hx − g .

(if H is symmetric; WLOG assume it is), and

∇2f (x) = H.

Therefore, if H is positive definite, then the unique minimizer x∗ is the
solution to

Hx∗ = g .
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Newton’s Method

Newton’s Method

Newton’s Method solves for the minimizer of the local quadratic model of
f about the current iterate xk given by

mk(x) = f (xk) +∇f (xk)T (x − xk) +
1

2
(x − xk)T∇2f (xk)(x − xk).

If ∇2f (xk) is positive definite, then the minimizer xk+1 of mk is the unique
solution to

0 = ∇mk(x) = ∇f (xk) +∇2f (xk)(x − xk). (8)
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Newton’s Method

Newton Step

The solution to (8) is computed by solving

∇2f (xk)sk = −∇f (xk)

for the Newton Step sNk . Then the Newton update is defined by

xk+1 = xk + sNk .

Note: the step sNk has both direction and length. Variants of Newton’s
Method modify one or both of these.
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Newton’s Method

Standard Assumptions

Assume that f and x∗ satisfy the following

1 Let f be twice continuously differentiable and Lipschitz continuous
with constant γ

‖∇2f (x)−∇2f (y)‖ ≤ γ‖x − y‖.

2 ∇f (x∗) = 0.

3 ∇2f (x∗) is positive definite.
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Newton’s Method

Convergence Rate

Theorem

Let the Standard Assumptions hold. Then there exists a δ > 0 such that if
x0 ∈ Bδ(x∗), the Newton iteration converges quadratically to x∗.

I.e., ‖ek+1‖ ≤ K‖ek‖2.

If x0 is not close enough, Hessian may not be positive definite.

If you start close enough, you stay close enough.
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Newton’s Method

Problems (and solutions)

Need derivatives

Use finite difference approximations (with Implicit Filtering)
Or automatic differentiation

Need solution of linear system at each iteration

Use iterative linear solver like CG
(Inexact Newton)

Hessians are expensive to compute (and solve/factor)

Use chord (factor once) or Shamanskii (refresh occassionally)
Use Quasi-Newton (low rank update of Hk to get Hk+1,
and its inverse)
Use Gauss-Newton (first order approximation of Hessian)
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Gauss-Newton Method

Nonlinear Least Squares

Recall,

f (x) =
1

2

M∑
j=1

|u(tj ; x)− uj |2 =
1

2
R(x)TR(x).

Then for x = [c , k]T

∇f (x) =

[∑M
j=1

∂u(tj ;x)
∂c (u(tj ; x)− uj)∑M

j=1
∂u(tj ;x)
∂k (u(tj ; x)− uj)

]
= R ′(x)TR(x)

where R(x) = [u(t1; x)− u1, . . . , u(tM ; x)− uM ]T is called the residual

and R ′ij(x) = ∂Ri (x)
∂xj

.
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Gauss-Newton Method

Approximate Hessian

In terms of the residual R, the Hessian of f becomes

∇2f (x) = R ′(x)TR ′(x) + R ′′(x)R(x)

where R ′′(x)R(x) =
∑M

j=1 rj(x)∇2rj(x) and rj(x) is the jth element of the
vector R(x).
The second order term requires the computation of M Hessians, each size
N × N. However, if we happen to be solving a zero residual problem, this
second order term goes to zero. One can argue that for small residual
problems (and good initial iterates) the second order term is neglibible.
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Gauss-Newton Method

Gauss-Newton Method

The equation defining the Newton step

∇2f (xk)sk = −∇f (xk)

becomes

R ′(xk)TR ′(xk)sk = −∇f (xk)

= −R ′(xk)TR(xk).

We define the Gauss-Newton step as the solution sGNk to this equation.

You can expect close to quadratic convergence for small residual problems.
Otherwise, not even linear is guaranteed.
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Gauss-Newton Method

Numerical Example

Recall
u′′ + cu′ + ku = 0; u(0) = u0; u′(0) = 0.

Let the true parameters be x∗ = [c , k]T = [1, 1]T . Assume we have
M = 100 data uj from equally spaced time points on [0, 10].

We will use the initial iterate x0 = [1.1, 1.05]T with Newton’s Method
and Gauss-Newton.

We compute gradients with forward differences, analytical 2× 2
matrix inverse, and use ode15s for time stepping the ODE.
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Gauss-Newton Method
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Gauss-Newton Method
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Gauss-Newton Method

Newton Gauss-Newton

k ||∇f (xk)|| f (xk) ||∇f (xk)|| f (xk)

0 2.330e+01 7.881e-01 2.330e+01 7.881e-01
1 6.852e+00 9.817e-02 1.767e+00 6.748e-03
2 4.577e-01 6.573e-04 1.016e-02 4.656e-07
3 3.242e-03 3.852e-08 1.844e-06 2.626e-13
4 4.213e-07 2.471e-13

Table: Parameter identification problem, locally convergent iterations. CPU time
Newton: 3.4s, Gauss-Newton: 1s.
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Gauss-Newton Method
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Gauss-Newton Method

1 1.5 2 2.5 3 3.5

1

1.5

2

2.5

3

3.5

c

k

Search Direction

 

 

Newton’s Method
Gauss−Newton

Prof. Gibson (OSU) Gradient-based Methods for Optimization AMC 2018 25 / 75



Gauss-Newton Method
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Gauss-Newton Method

Global Convergence

Newton (or Gauss-Newton) direction may not be a descent direction
(if Hessian not positive definite).

Thus Newton (or any Newton-based method) may fail to decrease f
if x0 not close enough. Not globally convergent.

Globally convergent methods ensure (sufficient) decrease in f .

The steepest descent direction is always a descent direction.
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Steepest Descent Method

Steepest Descent Method

We define the steepest descent direction to be dk = −∇f (xk).
This defines a direction but not a step size.

We define the Steepest Descent update step to be sSDk = λkdk for
some λk > 0.

We will talk later about ways of choosing λk .

Since the steepest descent direction is always a descent direction, a
λk can be found to ensure (sufficient) decrease, thus the method is
guaranteed to converge to a local minima regardless of how far away
it starts (global convergence).
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Steepest Descent Method
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Steepest Descent Method
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Steepest Descent Method
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Steepest Descent Method

Steepest Descent Comments

Steepest Descent direction is best direction locally.

The negative gradient is perpendicular to level curves.

Solving for sSDk is equivalent to assuming ∇2f (xk) = I/λk .

In general you can only expect linear convergence.

Would be good to combine global convergence property of Steepest
Descent with superlinear convergence rate of Gauss-Newton.
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Levenberg-Marquardt Method

Levenberg-Marquardt Method

Recall the objective function

f (x) =
1

2
R(x)TR(x)

where R is the residual. We define the Levenberg-Marquardt update step
sLMk to be the solution of(

R ′(xk)TR ′(xk) + νk I
)
sk = −R ′(xk)TR(xk)

where the regularization parameter νk is called the Levenberg-Marquardt
parameter, and it is chosen such that the approximate Hessian
R ′(xk)TR ′(xk) + νk I is positive definite.
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Levenberg-Marquardt Method
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Levenberg-Marquardt Method
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Levenberg-Marquardt Method

Levenberg-Marquardt Notes

Robust with respect to poor initial conditions and larger residual
problems.

Varying ν involves interpolation between GN direction (ν = 0) and
SD direction (large ν).

See

doc lsqnonlin

for MATLAB instructions for LM and GN.
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Levenberg-Marquardt Method

Levenberg-Marquardt Idea

If iterate is not close enough to minimizer so that GN does not give a
descent direction, increase ν to take more of a SD direction.

As you get closer to minimizer, decrease ν to take more of a GN step.

For zero-residual problems, GN converges quadratically (if at all)
SD converges linearly (guaranteed)
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Levenberg-Marquardt Method

LM Alternative Perspective

Approximate Hessian may not be positive definite (or
well-conditioned), increase ν to add regularity.

As you get closer to minimizer, Hessian will become positive definite
(by Standard Assumptions). Decrease ν, as less regularization is
necessary.

Regularized problem is “nearby problem”, want to solve actual
problem as soon as is feasible.
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Summary

Summary of Methods

Newton:

mN
k (x) = f (xk) +∇f (xk)T (x − xk) +

1

2
(x − xk)T∇2f (xk)(x − xk)

Gauss-Newton:

mGN
k (x) = f (xk) +∇f (xk)T (x − xk) +

1

2
(x − xk)TR ′(xk)TR ′(xk)(x − xk)

Steepest Descent:

mSD
k (x) = f (xk) +∇f (xk)T (x − xk) +

1

2
(x − xk)T

1

λk
I (x − xk)

Levenberg-Marquardt:

mLM
k (x) = f (xk)+∇f (xk)T (x−xk)+

1

2
(x−xk)T

(
R ′(xk)TR ′(xk) + νk I

)
(x−xk)

0 = ∇mk(x) =⇒ Hksk = −∇f (xk)
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Globalization Outline

Line Search (Armijo Rule)
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Polynomial Models

Trust Region

Changing TR Radius
Changing LM Parameter

Prof. Gibson (OSU) Gradient-based Methods for Optimization AMC 2018 40 / 75



Line Search

Step Length

Steepest Descent Method

We define the steepest descent direction to be dk = −∇f (xk). This
defines a direction but not a step length.

We define the Steepest Descent update step to be sSDk = λkdk for
some λk > 0.

We would like to choose λk so that f (x) decreases sufficiently.

If we ask simply that
f (xk+1) < f (xk)

Steepest Descent might not converge (stagnation).
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Line Search Sufficient Decrease

Predicted Reduction

Consider a linear model of f (x)

mk(x) = f (xk) +∇f (xk)T (x − xk).

Then the predicted reduction using the Steepest Descent step
(xk+1 = xk − λk∇f (xk)) is

pred = mk(xk)−mk(xk+1) = λk‖∇f (xk)‖2.

The actual reduction in f is

ared = f (xk)− f (xk+1).
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Line Search Sufficient Decrease

Sufficient Decrease

We define a sufficient decrease to be when

ared ≥ α pred ,

where α ∈ (0, 1) (e.g., 10−4 or so).
Note: α = 0 is simple decrease.
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Line Search Armijo Rule

Armijo Rule

We can define a strategy for determining the step length in terms of a
sufficient decrease criteria as follows:
Let λ = βm, where β ∈ (0, 1) (think 1

2 ) and m ≥ 0 is the smallest integer
such that

ared > α pred ,

where α ∈ (0, 1).
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Line Search Armijo Rule

Line Search

The Armijo Rule is an example of a line search:
Search on a ray from xk in direction of locally decreasing f .

Armijo procedure is to start with m = 0 then increment m until
sufficient decrease is achieved, i.e., λ = βm = 1, β, β2, . . .

This approach is also called “backtracking” or performing “pullbacks”.

For each m a new function evaluation is required.

Prof. Gibson (OSU) Gradient-based Methods for Optimization AMC 2018 45 / 75



Line Search Damped Gauss-Newton

Damped Gauss-Newton

Armijo Rule applied to the Gauss-Newton step is called the Damped
Gauss-Newton Method.

Recall

dGN = −
(
R ′(x)TR ′(x)

)−1
R ′(x)TR(x).

Note that if R ′(x) has full column rank, then

0 > ∇f (x)TdGN =

−
(
R ′(x)TR(x)

)T (
R ′(x)TR ′(x)

)−1
R ′(x)TR(x)

so the GN direction is a descent direction.
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Line Search Damped Gauss-Newton

Damped Gauss-Newton Step

Thus the step for Damped Gauss-Newton is

sDGN = βmdGN

where β ∈ (0, 1) and m is the smallest non-negative integer to guarantee
sufficient decrease.
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Line Search LMA

Levenberg-Marquardt-Armijo

If R ′(x) does not have full column rank, or if the matrix R ′(x)TR ′(x)
may be ill-conditioned, you should be using Levenberg-Marquardt.

The LM direction is a descent direction.

Line search can be applied.

Can show that if νk = O(‖R(xk)‖) then LMA converges quadratically
for (nice) zero residual problems.
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Line Search

Numerical Example

Recall
u′′ + cu′ + ku = 0; u(0) = u0; u′(0) = 0.

Let the true parameters be x∗ = [c , k]T = [1, 1]T . Assume we have
M = 100 data uj from equally spaced time points on [0, 10].

We will use the initial iterate x0 = [3, 1]T with Steepest Descent,
Gauss-Newton and Levenberg-Marquardt methods using the Armijo
Rule.
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Line Search
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Line Search
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Line Search
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Line Search
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Levenberg-Marquardt Parameter

Word of Caution for LM

Note that blindly increasing ν until a sufficient decrease criteria is
satisfied is NOT a good idea (nor is it a line search).

Changing ν changes direction as well as step length.

Increasing ν does insure your direction is descending.

But, increasing ν too much makes your step length small.
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Levenberg-Marquardt Parameter
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Levenberg-Marquardt Parameter
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Polynomial Models

Line Search Improvements

Step length control with polynomial models

If λ = 1 does not give sufficient decrease, use f (xk), f (xk + d) and
∇f (xk) to build a quadratic model of

ξ(λ) = f (xk + λd)

Compute the λ which minimizes model of ξ.

If this fails, create cubic model.

If this fails, switch back to Armijo.

Exact line search is (usually) not worth the cost.
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Trust Region Methods

Trust Region Methods

Let ∆ be the radius of a ball about xk inside which the quadratic
model

mk(x) = f (xk) +∇f (xk)T (x − xk)

+
1

2
(x − xk)THk(x − xk)

can be “trusted” to accurately represent f (x).

∆ is called the trust region radius.

T (∆) = {x | ‖x − xk‖ ≤ ∆} is called the trust region.

Prof. Gibson (OSU) Gradient-based Methods for Optimization AMC 2018 58 / 75



Trust Region Methods

Trust Region Problem

We compute a trial solution xt , which may or may not become our
next iterate.

We define the trial solution in terms of a trial step xt = xk + st .

The trial step is the (approximate) solution to the trust region
problem

min
‖s‖≤∆

mk(xk + s).

I.e., find the trial solution in the trust region which minimizes the
quadratic model of f .
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Trust Region Methods Changing Trust Region Radius

Changing Trust Region Radius

Test the trial solution xt using predicted and actual reductions.

If µ = ared/pred too low, reject trial step and decrease trust region
radius.

If µ sufficiently high, we can accept the trial step, and possibly even
increase the trust region radius (becoming more aggressive).
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Trust Region Methods

Exact Solution to TR Problem

Theorem

Let g ∈ RN and let A be a symmetric N × N matrix. Let

m(s) = gT s + sTAs/2.

Then a vector s is a solution to

min
‖s‖≤∆

m(s)

if and only if there is some ν ≥ 0 such that

(A + νI )s = −g

and either ν = 0 or ‖s‖ = ∆.
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Trust Region Methods LM as a TRM

LM as a TRM

Instead of controlling ∆ in response to µ = ared/pred , adjust ν.

Start with ν = ν0 and compute xt = xk + sLM .

If µ = ared/pred too small, reject trial and increase ν. Recompute
trial (only requires a linear solve).

If µ sufficiently high, accept trial and possibly decrease ν (maybe to
0).

Once trial accepted as an iterate, compute R, f , R ′, ∇f and test
‖∇f ‖ for termination.
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Trust Region Methods LM as a TRM
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Trust Region Methods LM as a TRM

0 5 10 15 20 25 30
10

−6

10
−4

10
−2

10
0

10
2

10
4

Iterations

G
ra

di
en

t N
or

m

Newton Trust Region

0 5 10 15 20 25 30
10

−15

10
−10

10
−5

10
0

10
5

Iterations

F
un

ct
io

n 
V

al
ue

Newton Trust Region

0 2 4 6 8 10 12
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Iterations

G
ra

di
en

t N
or

m

Levenberg−Marquardt

0 2 4 6 8 10 12
10

−15

10
−10

10
−5

10
0

10
5

Iterations

F
un

ct
io

n 
V

al
ue

Levenberg−Marquardt

Prof. Gibson (OSU) Gradient-based Methods for Optimization AMC 2018 64 / 75



Summary

Summary

If Gauss-Newton fails, use Levenberg-Marquardt for low-residual
nonlinear least squares problems.

Achieves global convergence expected of Steepest Descent, but limits
to quadratically convergent method near minimizer.

Use either a trust region or line search to ensure sufficient decrease.

Can use trust region with any method that uses quadratic model of f .
Can only use line search for descent directions.
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3 Moré, J. J., “The Levenberg-Marquardt Algorithm: Implementation and
Theory”, Numerical Analysis, ed. G. A. Watson, Lecture Notes in
Mathematics 630, Springer Verlag, 1977.

4 Kelley, C. T., “Iterative Methods for Optimization”, Frontiers in Applied
Mathematics 18, SIAM, 1999.
http://www4.ncsu.edu/∼ctk/matlab darts.html.

Prof. Gibson (OSU) Gradient-based Methods for Optimization AMC 2018 66 / 75



Linear Least Squares

Consider A ∈ RM×N and b ∈ RM , we wish to find x ∈ RN such that

Ax = b.

In the case when M = N and A−1 exists, the unique solution is given by

x = A−1b.

For all other cases, if A is full rank, a solution is given by

x = A+b

where A+ = (ATA)−1AT is the (Moore-Penrose) psuedoinverse of A. This
solution is known as the (linear) least squares solution because it
minimizes the `2 distance between the range of A and the RHS b

x = argmin‖b − Ax‖2.
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Linear Least Squares

Can also be written as the solution to the normal equation

ATAx = ATb.

Corollary: There exists a unique least squares solution to Ax = b iff A has
full rank.
However, there may be (numerical) problems if A is “close” to
rank-deficient, i.e., ATA is close to singular.
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Linear Least Squares

Regularization

One can make ATA well-posed or better conditioned by adding on a
well-conditioned matrix, e.g., αI , α > 0 (Tikhonov Regularization). Thus
we may solve

(ATA + αI )x = ATb

or equivalently
x = argmin‖b − Ax‖2 + α‖x‖2

where we have added a penalty function.
Of course, now we are solving a different (nearby) problem; this is a
trade-off between matching the data (b) and prefering a particular type of
solution (e.g., minimum norm).
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Statistical Estimation

Linear Least Squares with Uncertainty

Consider solving
AX = B − N

where now X ,B,N are random variables with N ∼ N (~0,CN) representing
additive Gaussian white noise and we expect the solution X to behave
X ∼ N (~0,CX ) (prior distribution). For any given realization of B we wish
to find the expected value of X under uncertainty governed by N.

Prof. Gibson (OSU) Gradient-based Methods for Optimization AMC 2018 70 / 75



Statistical Estimation

Maximum Likelihood Estimator

The maximum likelihood estimator answers question: “which value of X is
most likely to produce the measured data B?”

xMLE = argmaxp(b|x) = argmaxlogp(b|x)

where

p(b|x) = c exp

(
−1

2
(b − Ax)TC−1

N (b − Ax)

)
and

logp(b|x) = −1

2
(b − Ax)TC−1

N (b − Ax) + c̃
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Statistical Estimation

The maximum occurs when

0 =
d

dx
logp(b|x) = ATC−1

N (b − Ax)

or
ATC−1

N Ax = ATC−1
N b.

Note that solution does not depend on assumed distribution for X (ignores
prior). If we assume that the error i.i.d., CN = σ2

N I , then

ATAx = ATb

and we get exactly the normal equations. Thus if you use the least squares
solution, you are assuming i.i.d, additive Gaussian white noise.
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Statistical Estimation

Weighted Linear Least Squares

If this is not a good assumption, don’t use lsq. For instance, if CN = γ2Γ,
Γ spd, then xMLE solves

ATΓ−1Ax = ATΓ−1b

or
min
x
‖b − Ax‖Γ

otherwise known as weighted least squares.
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Statistical Estimation

Maximum a Posteriori Estimator

MAP directly answers the question: “given observation b what is the most
likely x?” Consider again

AX = B − N

with N ∼ N (~0,CN) and X ∼ N (~0,CX ) (prior distribution). Applying
Bayes’ Law

p(x |b) =
p(b|x)p(x)

p(b)

and taking logs on both sides gives

logp(x |z) = −1

2
(b − Ax)TC−1

N (b − Ax)− 1

2
xTC−1

X x + c̃ .

Differentiating wrt x implies xMAP solves

(ATC−1
N A + C−1

x )x = ATC−1
N b.
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Statistical Estimation

Tikhonov Regularization (Again)

(ATC−1
N A + C−1

x )x = ATC−1
N b.

Assuming CN = σ2
N I and CX = σ2

X I , then(
ATA +

(
σN
σX

)2

I

)
x = ATb

which are exactly the Tikhonov regularized normal equations with

α =

(
σN
σX

)2

representing a signal-to-noise ratio (trade-off).

Prof. Gibson (OSU) Gradient-based Methods for Optimization AMC 2018 75 / 75


	Unconstrained Optimization
	Newton's Method
	Gauss-Newton Method
	Steepest Descent Method
	Levenberg-Marquardt Method
	Summary
	Line Search
	Sufficient Decrease
	Armijo Rule
	Damped Gauss-Newton
	LMA

	Levenberg-Marquardt Parameter
	Polynomial Models
	Trust Region Methods
	Changing Trust Region Radius
	LM as a TRM

	Summary
	Statistical Estimation

