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oD
B +J=VxH (Ampere)
0B
i —V x E (Faraday)
V:-D=p (Poisson)
V-B=0 (Gauss)
E = Electric field vector D = Electric displacement
H = Magnetic field vector B = Magnetic flux density
p = Electric charge density J = Current density

With appropriate initial conditions and boundary conditions.
NS CE) N Polynomial Chaos for Stochastic Polarization ~ NJIT Sep 2010 4 /41



Maxwell's equations are completed by constitutive laws that describe
the response of the medium to the electromagnetic field.

D=¢c+P

B=yH+M

J=0E+J,
P = Polarization e = Electric permittivity
M = Magnetization = Magnetic permeability
Js = Source Current o = Electric Conductivity



@ We can define P in terms of a convolution

P(t,x) = g x E(t,x) = /Otg(t —s5,x;q)E(s, x)ds,

where g is the dielectric response function (DRF).

o In the frequency domain D = eye(w)E, where e(w) is called the
complex permittivity.

@ ¢(w) described by the polarization model (and conductivity)

@ We are interested in ultra-wide bandwidth electromagnetic pulse
interrogation of dispersive dielectrics, therefore we want an
accurate representation of €(w) over a broad range of
frequencies.
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Figure: Debye model simulations.
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Figure: Real part of €(w), €, or the permittivity [GLG96].
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Figure: Imaginary part of €(w), o, or the conductivity.



@ Debye model [1929] q = [eq, 7]

g(t,x) = epeq /T €7
or TP +P = ey E
€d
or  €(w) =€+ 15 jor

with €4 := €p(€s — €00)-



@ Debye model [1929] q = [eq, 7]

g(t,x) = egeq /T €77
oo TP+P= €ocqE
or  €(w) =€+ 15 ior

with €4 := €p(€s — €00)-
@ Cole-Cole model [1936] (heuristic generalization)
q-= [eda T, Oé]



@ Broadband wave propagation suggests time-domain simulation.

@ The Cole-Cole model corresponds to a fractional order ODE in
the time-domain and is difficult to simulate.

@ Debye is efficient to simulate, but does not represent permittivity
well.

@ Better fits to data are obtained by taking linear combinations of
Debye models (discrete distributions), idea comes from the
known existence of multiple physical mechanisms.

@ An alternative approach is to consider the Debye model but with

a (continuous) distribution of relaxation times [von
Schweidler1907].

@ Empirical measurements suggest a log-normal distribution
[Wagner1913], but uniform is easier.
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Figure: Real part of €(w), €, or the permittivity [REU2008].
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To account for the effect of possible multiple parameter sets q,
consider

h(t,x: F) = /Q g(t,x q)dF(q),

where Q is some admissible set and F € (Q).
Then the polarization becomes:

P(t,x) = /Ot h(t — s,x; F)E(s, x)ds.

The inverse problem for F given time domain electric field data is
well-posed [BGO5, BGO6].



QIR TEINE  Distribution of Relaxation Times

We define the stochastic polarization P(t, x; 7) to be the solution to
TP + P = eoeqE
where 7 is a random variable with PDF f(7), for example,

1

Tb — Ta

f(r) =

for a uniform distribution.

The electric field depends on the macroscopic polarization, which we
take to be the expected value of the stochastic polarization at each
point (t,x)

P(t,x) = / Pt ) (r)dr

a
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SWARILIEINGLELII  Stochastic Polarization

We can apply the generalized Polynomial Chaos method [XKO03] to
the random ordinary differential equation (at each point in space and
each dimension independently)

TP 4+ P =coeqE, 7= 7(§) =156+ 7,

where & ~ U(—1,1), for example.
We apply a Polynomial Chaos expansion in terms of orthogonal
polynomials ¢;(£) to the solution P:

P(t,€) = > ai(t)ey(6).
=0
The RODE becomes

(To€ + 74) Z a;(t);(§) + Z a;(t);(§) = eqE.
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WACILIEINGLELI  Triple recursion formula

(To€ + 7u) Z a;(t);(§) + Z a;(t);(§) = eaE

We can eliminate the explicit dependence on & by using the triple
recursion formula for orthogonal polynomials

§oj = ajpj—1+ bjdj + ¢dja
(with ¢_; = 0), for example, for Legendre polynomials

(2 + 1) = joj1+ (U +1)pjsa
In general, the RODE becomes

Te Z &;(t)(ajpj—1 + bjoj + cjpjy1) + 7 Z &t

Jj=0
+ Z () ;
j=0
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CIATHIEINGIERTIE  Galerkin Projection onto span({qu}f:O)

We take the weighted inner product with each basis {¢;}/_, for a
fixed p resulting in the approximating system

(ToM + 7,1)d + @ = e4E &,

where @ = [ag(t), ..., a,(t)]" and
. -
o b a
M = ' ,
9p
| -1 bp |

or, more simply, _

Ad+d=4g.
The macroscopic polarization is taken to be the expected value of the
stochastic polarization at each point (t,x), for each dimension

P(t,x) = E[P(t,x)] = aop(t,x).
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@ Any set of orthogonal polynomials can be used in the truncated
expansion, but there may be an optimal choice.

@ If the polynomials are orthogonal with respect to weighting
function f(§), and k has PDF f(k), then it is known that the
PC solution to the ODE converges exponentially in terms of p.

@ In practice, approximately 4 are generally sufficient.



Table: Popular distributions and corresponding orthogonal polynomials.

Distribution | Polynomial | Support
Gaussian Hermite | (—o0, 00)
gamma Laguerre [0, 00)
beta Jacobi [a, b]
uniform Legendre [a, b]

Note: log-normal random variables may be handled as a non-linear
function (e.g., Taylor expansion) of a normal random variable.




Theorem (REU2010)
For the beta-Jacobi chaos (including uniform-Legendre), there exists
solutions to the system _
Ad+a=g
for any p.
Proof.
Relies on the fact that the invertibility of A requires 7, > 7,. This is
physically reasonable as to disallow negative relaxation times. O




@ Assume uniformity in the x-direction.
@ Assume that the electric field is polarized to oscillate only in the
y direction.

Evolution equations involving
E, H, D, B, P and J:

a_D+J—a_H
ot 0z
08 _OE
ot 0z

MN\_7/N\7)
Constitutive laws: /JW\% I/

B =uH
D=¢E+ P
J=0cE+ Js




DISGEFEIININ The Yee Scheme

Applying the central difference approximation, based on the Yee
scheme, our one dimensional equations
OE oH oP
= E

65_ 0z g ot

and
OH  OE
M@t Oz
become
1 b1 n_ yn hal a1 1 a1
E—Fr MM s T PP
At € Az € 2 € At
and " ) )
SR S VA
At 1 Az ‘

Note that while the electric field and magnetic field are staggered in
time, the electric field updates simultaneously with polarization.
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DISGEFEINI Time Discretization of PC Solution

We discretize the PC system

Ad+da=g

—

by applying central differences to @ = d(z) for arbitrary z,

—pt L —p— 1 St L —p_1 —pl —p_1
atz: — gz arta + "2 g”+2 —|-g” 2

At 2 >
Combining like terms gives

1

(2A+ At)a™ s = 24— At)a" + At (g7 + g7 %)

Note that we may first solve the discrete electric field equation for

n+1 . = . N
EkJr2 and plug into g”+% to define a decoupled update step for A.
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We look for plane wave solutions and assume spatial dependence of
the form

Hn+1 Hn-l—l(k) 1k(J+ )Az

E.’H‘E — En—l—% (k)eiijz

J
"+2 _ ngr% (k)eiijz

%,
nt3 At ikjAz
a, ;=04 *(k)e

where k is the wave number.



Stability Analysis

Substituting the above into our numerical method we obtain

BU™t = cU"
where o . )
U' = [H" E"z qy"" 2, .. .,o?p"+§]
[ Bu B/, (1 y/u
B := 2 B11 .=
| Boy 2A+ Atl |0 6t
[0 2 [0 —Atey
00 0 0
B12 .= | B21 .= | . ]
i 0 0 i 0 0
2iA kA
07 :=2e+ oAt = 1Azt sin ( 22)
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Continuing:

where

Note: for p

N. L. Gibson

Stability Analysis

BU™ = CU"
[ B B, [ 1 y/p
B11 =
| By 24+ Al 0 ¢
Ci1 B [ 1 0
12 Cl1 =
L —B21 2A — Atl L —2’}/ 0~
0t = 2¢ + oAt 0~ =2 — oAt
kAz

it

v Az

(0SU)

o

=0, A= 7, and we recover single Debye equations.
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Theorem (REU2010)

The numerical polynomial chaos scheme is stable for Legendre
polynomials with p = 1 if and only if the following conditions hold

r<1
€5 2 €
7, > 0.
Proof.
Direct application of Routh-Horwitz criteria O

The last condition again disallows negative relaxation times.



@ If the modulus of all the generalized (complex, time) eigenvalues
of (B, C) are less than one, the method is stable.

@ The stability polynomial given by det(C — AB) is of degree p+ 3.

@ The roots depend on material and discretization parameters
including: kAz (quantifies ppw), h := At/7, (temporal
resolution), v (relates Az and At), as well as 7, (quantifies
variance).

@ We plot the largest modulus of A as a function of kAz in the
following with all other parameters fixed.



Polynomial Chaos Debye dissipation withv=1 and h=0.1
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Figure: Using parameters of dry skin data and p =2



Single-pole Debye dissipation with v=1 and h=0.1
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Figure: Using parameters of dry skin data and p =10



Polynomial Chaos Debye dissipation with v=1 and h=0.01
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Figure: Using parameters of dry skin data and p =2



Single-pole Debye dissipation with v=1 and h=0.01
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Figure: Using parameters of dry skin data and p =10



@ Windowed 10'° Hz signal propagation in a stochastic Debye
dielectric model of water.

@ Time trace measured at 0.015 m inside material.

o Let h, := At/7,, where 7, = 8.13 x 1072 is the measured
deterministic value.

@ We use Uniform-Legendre chaos expansions with, for example,
T ~ U[.757,,1.257,].
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Figure: Using parameters of dry skin data with 7 ~ U[.757,,1.257,], and
using p = 0,1,2 polynomials. Shows significant convergence after just

p=1
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) Maximum Difference Calculated for different values of p and r
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Figure: Maximum Error for various values of p and r.



p=0, htau=0.025
100 T T T T

0 0.2 0.4 0.6 0.8

~P
i
N
g
>
i
o
-
©
N

Figure: Using parameters of dry skin data with deterministic
T € [.757,,1.257,]. Shows suggests that stochastic polarization will have
slightly higher amplitude if considered as an average of these simulations.
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Figure: Using parameters of dry skin data and p = 0. Shows h, = 0.01
required for accuracy.
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Figure: Using parameters of dry skin data and p = 1. Shows h, = 0.005
required for accuracy. Non-zero variance implies smaller relaxation times
are present.
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Figure: Using parameters of dry skin data and p = 2. Shows h, = 0.005
required for accuracy. As expected, including more polynomials does not
reduce temporal resolution errors.



@ Stochastic Polarization well suited for modeling realistic
dielectric materials

@ Distributions of parameters avoids fractional order derivative
models

@ Polynomial Chaos is a simple-to-use method for efficiently
simulating stochastic polarization

@ Stability properties of the numerical method are similar to
deterministic case

@ Stochastic polarization exhibits less dissipation for comparable
discretization parameters
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