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Abstract

We present a matrix theoretic derivation of the Kalman filter—motivated by
the statistical technique of minimum variance estimation—in order to make its
theoretical underpinnings accessible to a broader audience. Standard derivations
of the filter utilize probabilistic arguments that are less familiar to the matrix
analyst and computational mathematician.

1 Introduction

Of key interest to us are stochastic linear systems of the form

d = Gφ + e, (1)

where d ∈ Rm is measured data; G ∈ Rm×n is a known model matrix; φ ∈ Rn is the
unknown parameter vector to be estimated; e ∈ Rm is a zero-mean Gaussian random
vector; and φ ∈ Rn is a zero-mean Gaussian random vector. In this case, the minimum
variance estimator of φ [4] can be expressed as the solution of a n× n linear system.

Our derivation of the Kalman filter [3, 5] arises from an application of minimum
variation estimation to the sequentially coupled system of linear equations

φk = Mkφk−1 + Ek, (2)
dk = Gkφk + ek, (3)

where equation (3) is analogous to (1); and in (2), Mk ∈ Rn is the known evolution
matrix, φk−1 is a Gaussian random vector, and Ek ∈ Rn is a zero-mean Gaussian
random vector.

Our discussion requires a knowledge of some basic statistical definitions and results.
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2 Statistical Preliminaries

Let x = (x1, . . . , xn)T be a random vector with E(xi) the mean of xi and E((xi −
µi)2), where µi = E(xi), its variance. The mean of x is then defined E(x) =
(E(x1), . . . , E(xn))T , while the n× n covariance matrix of x is defined

[cov(x)]ij = E((xi − µi)(xj − µj)), 1 ≤ i, j ≤ n.

Note that the diagonal of cov(x) contains the variances of x1, . . . , xn, while the off
diagonal elements contain the covariance values. Thus if xi and xj are independent
[cov(x)]ij = 0.

The n×m cross correlation matrix of the random n-vector x and m-vector y, which
we will denote Γxy, is defined

Γxy = E(xyT ), (4)

where [E(xyT )]ij = E(xiyj). If x and y are independent, then Γxy is the zero matrix.
Furthermore,

E(x) = 0 implies Γxx = cov(x). (5)

Finally, given an m × n matrix A and a random n-vector x, it is not difficult to
show that

cov(Ax) = Acov(x)AT . (6)

We end these preliminary comments with the example of primary interest to us in
this paper, the Gaussian distribution. If d is an n × 1 Gaussian random vector, then
its probability density function has the form

pd(d; µ,C) =
1√

(2π)n det(C)
exp

(
−1

2
(d− µ)T C−1(d− µ)

)
, (7)

where µ ∈ Rn, C is an n × n symmetric positive definite matrix, and det(·) denotes
matrix determinant. Then E(d) = µ and cov(d) = C. We will use the notation
d ∼ N(µ,C) in this case.

For more details on introductory mathematical statistics, see one of many intro-
ductory mathematics statistics texts, including [2].

3 Minimum Variance Estimation

We consider linear system (1) and assume that φ ∼ N(0, Cφ) with Cφ a symmetric
positive definite matrix. We assume, furthermore, that φ and e are independent ran-
dom variables. The problem of estimating φ is statistical, however as we will see, the
minimum variance estimator can be expressed as the solution of a linear system. We
can now define the minimum variance estimator of φ.

Definition 1. Suppose φ and d are jointly distributed random vectors whose compo-
nents have finite expected squares. The minimum variance estimator of φ from d is
given by

φest = B̂d,
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where
B̂ = arg min

B∈Rn×n
E

(‖Bd− φ‖‖22
)
.

We now state and prove a theorem that gives us the minimum variance estimator
in an elegant closed form.

Theorem 1. If Γdd (defined in (4)) is invertible, then the minimum variance estimator
of φ from d is given by

φest = (ΓφdΓdd
−1)d.

Proof. First we note, via properties of the trace function, that

E(‖Bd− φ‖2) = trace(E[(Bd− φ)(Bd− φ)T ]),

= trace
(
BE[ddT ]BT −BE[dφT ]− E[φdT ]BT + E[φφT ]

)
.

Then, using the distributive property of the trace function and the identity

d

dB
trace(BC) =

d

dB
trace(CT BT ) = CT ,

we see that dE(‖Bd− φ‖2)/dB = 0 when

B = ΓφdΓdd
−1,

where Γφd and Γdd are defined in (4).

Given our assumptions above – recall that φ and e are independent zero mean
random vectors – we have from (4) and (5)

Γφd = ΓφφGT + Γφe = CφGT ,

Γdd = GΓφφGT + Γee = GCφGT + Ce.

Thus the minimum variance estimator is given by

φest = CφGT (GCφGT + Ce)−1d,

= (GT C−1
e G + Cφ

−1)−1GT C−1
e d. (8)

The second equality is valid since Cφ is assumed to be nonsingular (a nice exercise),
and it shows us that in this case φest can also be expressed

φest = arg min
φ
‖Gφ− d‖2

C−1
e

+ ‖φ‖2
C−1

φ

. (9)

This establishes a clear connection between minimum variance estimation and gener-
alized Tikhonov regularization [4]. Note in particular that if Ce = σ2

1I and Cφ = σ2
2I,

the minimum variance estimate can be written

φest = arg min
φ
‖Gφ− d‖22 + (σ2

1/σ2
2)‖φ‖22,

which has classical Tikhonov form.
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4 The Kalman Filter

Up to this point, we have considered stationary linear models, but suppose that what
we wish to estimate (φ above) changes in time. More specifically, suppose our model
now has the form (1), (2). Equation (1) is the equation of evolution for φk with Mk

the n × n linear evolution matrix, and Ek ∼ N(0,CEk
). In equation (2), dk denotes

the m×1 observed data, Gk the m×n linear observation matrix, and ek ∼ N(0,Cek
).

In both equations, k denotes the time index.
The problem is to estimate φk at time k from dk and an estimate φest

k−1 of the state
at time k − 1. We assume φest

k−1 ∼ N(φk−1,C
est
k−1).

To facilitate a more straightforward application of the result of Theorem 1, we
rewrite (1), (2). First, define

φa
k = Mkφest

k−1 (10)
zk = φk − φa

k, (11)
rk = dk −Gkφa

k. (12)

Then, subtracting (10) from (1) and Gkφa
k from both sides of (2), and dropping the k

dependence for notational simplicity, we obtain the stochastic linear equations

z = M(φ− φest) + E, (13)
r = Gz + e. (14)

The minimum variance estimator of z from r given (13), (14) is then given, via
Theorem 1, by

zest = ΓzrΓrr
−1r.

We assume that φ− φest is independent of E, and that z = φ− φa is independent of
e. We note, furthermore, that by assumption both of these random vectors have zero
mean. Then, from (4), (5), (6), (13) and (14), we obtain

Γzz = MCestMT + CE
def= Ca, (15)

Γzr = CaGT ,

Γrr = GCaGT + Ce.

where Cest and Ca are the covariance matrices for φest and φa respectively. Thus,
finally, the minimum variance estimator of z is given by

zest = CaGT (GCaGT + Ce)−1r, (16)

From (16) and (11) we then immediately obtain the Kalman Filter estimate of φ given
by

φest
+ = φa + H(d−Gφa). (17)

where

H = CaGT (GCaGT + Ce)−1 (18)
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is known as the Kalman Gain.
Finally, in order to compute the covariance of φest

+ , we note that by (17) and (2),

φest
+ = (I−HG)φa + He + HGφ,

where φ is the true state. Given our assumptions and using (6), the covariance then
takes the form

Cest
+ = (I−HG)Ca(I−HG)T + HCeHT ,

which can be rewritten, using the identity HCeHT = (I − HG)CaGT HT , in the
simplified form

Cest
+ = Ca −HGCa. (19)

Incorporating the k dependence again leads directly to the Kalman filter iteration.

The Kalman Filter Algorithm

Step 0: Select initial guess φest
0 and covariance Cest

0 , and set k = 1.

Step 1: Compute the evolution model estimate and covariance:
A. Compute φa

k = Mkφest
k−1;

B. Compute Ca
k = MkCest

k−1M
T
k + CEk

:= Ca
k.

Step 2: Compute the Kalman filter estimate and covariance:
A. Compute the Kalman Gain Hk = Ca

kG
T
k (GkCa

kG
T
k + Ce)−1;

B. Compute the estimate φest
k = φa

k + Hk(dk −Gkφa
k);

C. Compute the estimate covariance Cest
k = Ca

k −HkGkCa
k.

Step 3: Update k := k + 1 and return to Step 1.

4.1 A Variational Formulation of the Kalman Filter

As in the stationary case (see (8)), we can rewrite equation (16) in the form

zest = (GC−1
e GT + (Ca)−1)−1GT C−1

e r,

which, yields, using (11), the Kalman filter estimate

φest
+ = φa + [GT C−1

e G + (Ca)−1]−1GT C−1
e (d−Gφa),

= arg min
φ

{
`(φ) def=

1
2
(d−Gφ)T C−1

e (d−Gφ) +
1
2
(φ− φa)T (Ca)−1(φ− φa)

}
.

It can be shown using a Taylor series argument that

φest
+ = φa −∇2`(φa)−1∇`(φa), (20)

where ∇` and ∇2` denote the gradient and Hessian of ` respectively, and are given by

∇`(φ) = GT C−1
e (d−Gφ) + (Ca)−1(φ− φa),

∇2`(φ) = GT C−1
e G + (Ca)−1.
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By the matrix inversion lemma, we have

(GT C−1
e G + (Ca)−1)−1 = Ca −CaGT (GT CaGT + Ce)−1GCa.

Then from equations (18) and (19), we obtain the very useful fact that

Cest
+ = ∇2`(φ)−1. (21)

This allows us to define an iteration analogous to that given above.

The Variational Kalman Filter Algorithm

Step 0: Select initial guess φest
0 and covariance Cest

0 , and set k = 1.

Step 1: Compute the evolution model estimate and covariance:
A. Compute φa

k = Mkφest
k−1;

B. Compute Ca
k = MkCest

k MT
k + CEk

:= Ca
k.

Step 2: Compute the Kalman filter estimate and covariance:
A. Compute the estimate φest

k = arg minφ `(φ);
C. Compute the estimate covariance Cest

k = ∇2`(φ)−1.

Step 3: Update k := k + 1 and return to Step 1.

A natural question is, what is the use of this equivalent formulation of the Kalman
filter? Theoretically there is no benefit gained in using the variational Kalman filter if
the estimate and its covariance are computed exactly. However, with the variational ap-
proach, the filter estimate, and even its covariance [1], can be computed approximately
using an iterative minimization method. This is particularly important for large-scale
problems where the exact Kalman filter is prohibitively expensive to compute.

4.2 The Extended Kalman Filter

The extended Kalman filter (EKF) is the extension of the Kalman filter when (1), (2)
are replaced by

φk = M(φk−1) + Ek, (22)
dk = G(φk) + ek, (23)

where M and G are (possibly) nonlinear functions. EKF is obtained by the following
simple modification of either of the above algorithms: in Step 1, A use, instead, φa

k =
M(φest

k ), and define

Mk =
∂M(φest

k−1)
∂φ

, and Gk =
∂G(φa

k)
∂φ

, (24)

where ∂

∂φ
denotes the Jacobian.
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5 Conclusions

We have presented a derivation of the Kalman filter that utilizes matrix analysis tech-
niques as well as the Bayesian statistical approach of minimum variance estimation. In
addition, we presented an equivalent variational formulation of the Kalman filter, as
well as the extended Kalman filter for nonlinear problems.
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