
EVALUATING A POLYNOMIAL

Consider having a polynomial

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

which you need to evaluate for many values of x. How

do you evaluate it? This may seem a strange question,

but the answer is not as obvious as you might think.

The standard way, written in a loose algorithmic for-

mat:

poly = a0
for j = 1 : n
poly = poly + ajx

j

end

To compare the costs of different numerical meth-

ods, we do an operations count, and then we compare

these for the competing methods. Above, the counts

are as follows:

additions : n

multiplications : 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

This assumes each term ajx
j is computed indepen-

dently of the remaining terms in the polynomial.

Next, do the terms xj recursively:

xj = x · xj−1

Then to compute
n
x2, x3, ..., xn

o
will cost n−1 mul-

tiplications. Our algorithm becomes

poly = a0 + a1x
power = x
for j = 2 : n
power = x · power
poly = poly + aj · power

end

The total operations cost is

additions : n

multiplications : n+ n− 1 = 2n− 1
When n is evenly moderately large, this is much less

than for the first method of evaluating p(x). For ex-

ample, with n = 20, the first method has 210 multi-

plications, whereas the second has 39 multiplications.

We now considered nested multiplication. As exam-
ples of particular degrees, write

n = 2 : p(x) = a0 + x(a1 + a2x)
n = 3 : p(x) = a0 + x (a1 + x (a2 + a3x))
n = 4 : p(x) = a0 + x (a1 + x (a2 + x (a3 + a4x)))

These contain, respectively, 2, 3, and 4 multiplica-
tions. This is less than the preceding method, which
would have need 3, 5, and 7 multiplications, respec-
tively.

For the general case, write

p(x) = a0+x (a1 + x (a2 + · · ·+ x (an−1 + anx) · · ·))
This requires n multiplications, which is only about
half that for the preceding method. For an algorithm,
write

poly = an
for j = n− 1 : −1 : 0
poly = aj + x · poly

end

With all three methods, the number of additions is n;
but the number of multiplications can be dramatically
different for large values of n.

NESTED MULTIPLICATION

Imagine we are evaluating the polynomial

p(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n

at a point x = z. Thus with nested multiplication

p(z) = a0+z (a1 + z (a2 + · · ·+ z (an−1 + anz) · · ·))
We can write this as the following sequence of oper-

ations:

bn = an
bn−1 = an−1 + zbn
bn−2 = an−2 + zbn−1

...
b0 = a0 + zb1

The quantities bn−1, ..., b0 are simply the quantities in
parentheses, starting from the inner most and working

outward.

Introduce

q(x) = b1 + b2x+ b3x
2 + · · ·+ bnx

n−1

Claim:

p(x) = b0 + (x− z)q(x) (∗)
Proof: Simply expand

b0 + (x− z)
³
b1 + b2x+ b3x

2 + · · ·+ bnx
n−1´

and use the fact that

zbj = bj−1 − aj−1, j = 1, ..., n

With this result (*), we have

p(x)

x− z
=

b0
x− z

+ q(x)

Thus q(x) is the quotient when dividing p(x) by x−z,
and b0 is the remainder.

If z is a zero of p(x), then b0 = 0; and then

p(x) = (x− z)q(x)

For the remaining roots of p(x), we can concentrate

on finding those of q(x). In rootfinding for polynomi-

als, this process of reducing the size of the problem is

called deflation.

Another consequence of (*) is the following. Form

the derivative of (*) with respect to x, obtaining

p0(x) = (x− z)q0(x) + q(x)

p0(z) = q(z)

Thus to evaluate p(x) and p0(x) simultaneously at x =
z, we can use nested multiplication for p(z) and we

can use the intermediate steps of this to also evaluate

p0(z). This is useful when doing rootfinding problems
for polynomials by means of Newton’s method.

APPROXIMATING SF (x)

Define

SF (x) =
1

x

Z x

0

sin t

t
dt, x 6= 0

We use Taylor polynomials to approximate this func-

tion, to obtain a way to compute it with accuracy and

simplicity.

x

y

0.5

1.0

-8 -4 84

As an example, begin with the degree 3 Taylor ap-

proximation to sin t, expanded about t = 0:

sin t = t− 1
6
t3 +

1

120
t5 cos ct

with ct between 0 and t. Then

sin t

t
= 1− 1

6
t2 +

1

120
t4 cos ctZ x

0

sin t

t
dt =

Z x

0

·
1− 1

6
t2 +

1

120
t4 cos ct

¸
dt

= x− 1

18
x3 +

1

120

Z x

0
t4 cos ctdt

1

x

Z x

0

sin t

t
dt = 1− 1

18
x2 +R2(x)

R2(x) =
1

120

1

x

xZ
0

t4 cos ct dt

How large is the error in the approximation

SF (x) ≈ 1− 1

18
x2

on the interval [−1, 1]? Since |cos ct| ≤ 1, we have

for x > 0 that

0 ≤ R2(x) ≤
1

120

1

x

Z x

0
t4dt

=
1

600
x4

and the same result can be shown for x < 0. Then

for |x| ≤ 1, we have

0 ≤ R2(x) ≤
1

600

To obtain a more accurate approximation, we can pro-

ceed exactly as above, but simply use a higher degree

approximation to sin t.

In the book we consider finding a Taylor polynomial

approximation to SF (x) with its error satisfying

|R8(x)| ≤ 5× 10−9, |x| ≤ 1
A Matlab program, plot sint.m, implementing this

approximation is given in the text and in the class

account. The one in the class account includes the

needed additional functions sint tay.m and poly even.m.

Begin with a Taylor series for sin t,

sin t = t− t3

3!
+
t5

5!
− · · ·+ (−1)n−1 t2n−1

(2n− 1)!
+(−1)n t2n+1

(2n+ 1)!
cos(ct)

with ct between 0 and t. Then write

Sintx =
1

x

Z x

0

"
1− t2

3!
+
t4

5!
− · · ·

+(−1)n−1 t2n−2
(2n− 1)!

#
dt+R2n−2(x)

= 1− x2

3!3
+

x4

5!5
− · · ·

+(−1)n−1 x2n−2
(2n− 1)!(2n− 1) +R2n−2(x)

R2n−2(x) =
1

x

Z x

0
(−1)n t2n

(2n+ 1)!
cos(ct) dt

R2n−2(x) =
1

x

Z x

0
(−1)n t2n

(2n+ 1)!
cos(ct) dt

To simplify matters, let x > 0. Since |cos(ct)| ≤ 1,

|R2n−2(x)| ≤
1

x

Z x

0

t2n

(2n+ 1)!
dt =

x2n

(2n+ 1)!(2n+ 1)

It is easy to see that this bound is also valid for x < 0.

As required, choose the degree so that

|R2n−2(x)| ≤ 5× 10−9

From the error bound,

max
|x|≤1

|R2n−2(x)| ≤
1

(2n+ 1)!(2n+ 1)

Choose n so that this upper bound is itself bounded

by 5× 10−9. This is true if 2n+ 1 ≥ 11, i.e. n ≥ 5.

The polynomial is

p(x) = 1− x2

3!3
+

x4

5!5
− x6

7!7
+

x8

9!9
, −1 ≤ x ≤ 1

and

|SF (x)− p(x)| ≤ 5× 10−9, |x| ≤ 1
To evaluate it efficiently, we set u = x2 and evaluate

g(u) = 1− u

18
+

u2

600
− u3

35280
+

u4

3265920

After the evaluation of the coefficients (done once),

the total number of arithmetic evaluations is 4 addi-

tions and 5 multiplications to evaluate p(x) for each

value of x.

