#### **Gradient-based Methods for Optimization. Part II.**

Nathan L. Gibson

gibsonn@math.oregonstate.edu

Department of Mathematics Oregon State University

OSU – AMC Seminar, Nov. 2007 – p. 1

#### **Summary from Last Time**

- Unconstrained Optimization
  - Nonlinear Least Squares
    - Parameter ID Problem

#### Sample Problem:

$$u'' + cu' + ku = 0; u(0) = u_0; u'(0) = 0$$
 (1)

Assume data  $\{u_j\}_{j=0}^M$  is given for some times  $t_j$  on the interval [0, T]. Find  $x = [c, k]^T$  such that the following objective function is minimized:

$$f(x) = \frac{1}{2} \sum_{j=1}^{M} |u(t_j; x) - u_j|^2.$$

OSU – AMC Seminar, Nov. 2007 – p. 2

## **Summary Continued**

Update step

 $x_{k+1} = x_k + s_k$ 

- Newton's Method quadratic model
  - Gauss-Newton neglect 2nd order terms
- Steepest Descent always descent direction
- Levenberg-Marquardt like a weighted average of GN and SD with parameter  $\nu$

#### **Summary of Methods**

• Newton:

$$m_k^N(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \nabla^2 f(x_k) (x - x_k)$$

• Gauss-Newton:

$$m_k^{GN}(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T R'(x_k)^T R'(x_k) (x - x_k)$$

• Steepest Descent:

$$m_k^{SD}(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \frac{1}{\lambda_k} I(x - x_k)$$

Levenberg-Marquardt:

 $m_k^{LM}(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T \left( R'(x_k)^T R'(x_k) + \nu_k I \right) (x - x_k)$  $0 = \nabla m_k(x) \implies H_k s_k = -\nabla f(x_k)$ 

### Levenberg-Marquardt Idea

- If iterate is not close enough to minimizer so that GN does not give a descent direction, increase v to take more of a SD direction.
- As you get closer to minimizer, decrease  $\nu$  to take more of a GN step.
  - For zero-residual problems, GN converges quadratically (if at all)
  - SD converges linearly (guaranteed)

## **LM Alternative Perspective**

- Approximate Hessian may not be positive definite (or well-conditioned), increase v to add regularity.
- As you get closer to minimizer, Hessian will become positive definite. Decrease ν as less regularization is necessary.
- Regularized problem is "nearby problem", want to solve actual problem as soon as feasible.

# **Step Length**

#### **Steepest Descent Method**

- We define the *steepest descent direction* to be
  d<sub>k</sub> = −∇f(x<sub>k</sub>). This defines a direction but not a
  *step length*.
- We define the Steepest Descent update step to be  $s_k^{SD} = \lambda_k d_k$  for some  $\lambda_k > 0$ .
- We would like to choose λ<sub>k</sub> so that f(x) decreases sufficiently.
- Could ask simply that

$$f(x_{k+1}) < f(x_k)$$

#### **Predicted Reduction**

Consider a linear model of f(x)

$$m_k(x) = f(x_k) + \nabla f(x_k)^T (x - x_k).$$

Then the *predicted reduction* using the Steepest Descent step  $(x_{k+1} = x_k - \lambda_k \nabla f(x_k))$  is

 $pred = m_k(x_k) - m_k(x_{k+1}) = \lambda_k \|\nabla f(x_k)\|^2.$ 

The actual reduction in f is

Oregon State University

$$ared = f(x_k) - f(x_{k+1}).$$

#### **Sufficient Decrease**

We define a sufficient decrease to be when

 $ared > \alpha \ pred$ ,

where  $\alpha \in (0, 1)$  (e.g.,  $10^{-4}$  or so). Note:  $\alpha = 0$  is simple decrease.

## **Armijo Rule**

We can define a strategy for determining the step length in terms of a sufficient decrease criteria as follows:

Let  $\lambda = \beta^m$ , where  $\beta \in (0, 1)$  (think  $\frac{1}{2}$ ) and  $m \ge 0$  is the smallest integer such that

 $ared > \alpha \ pred$ ,

where  $\alpha \in (0, 1)$ .

#### **Line Search**

- The Armijo Rule is an example of a line search: Search on a ray from x<sub>k</sub> in direction of locally decreasing f.
- Armijo procedure is to start with m = 0 then increment m until sufficient decrease is achieved,
   i.e., λ = β<sup>m</sup> = 1, β, β<sup>2</sup>,...
- This approach is also called "backtracking" or performing "pullbacks".
- For each m a new function evaluation is required.

#### **Damped Gauss-Newton**

- Armijo Rule applied to the Gauss-Newton step is called the *Damped Gauss-Newton Method*.
- Recall

$$d^{GN} = -(R'(x)^T R'(x))^{-1} R'(x)^T R(x).$$

• Note that if R'(x) has full column rank, then

 $0 > \nabla f(x)^T d^{GN} = -(R'(x)^T R(x))^T (R'(x)^T R'(x))^{-1} R'(x)^T R(x)$ 

#### so the GN direction is a descent direction.

OSU – AMC Seminar, Nov. 2007 – p. 12

# **Damped Gauss-Newton Step**

Thus the step for Damped Gauss-Newton is

 $s^{DGN} = \beta^m d^{GN}$ 

where  $\beta \in (0, 1)$  and *m* is the smallest non-negative integer to guarantee sufficient decrease.

## Levenberg-Marquardt-Armijo

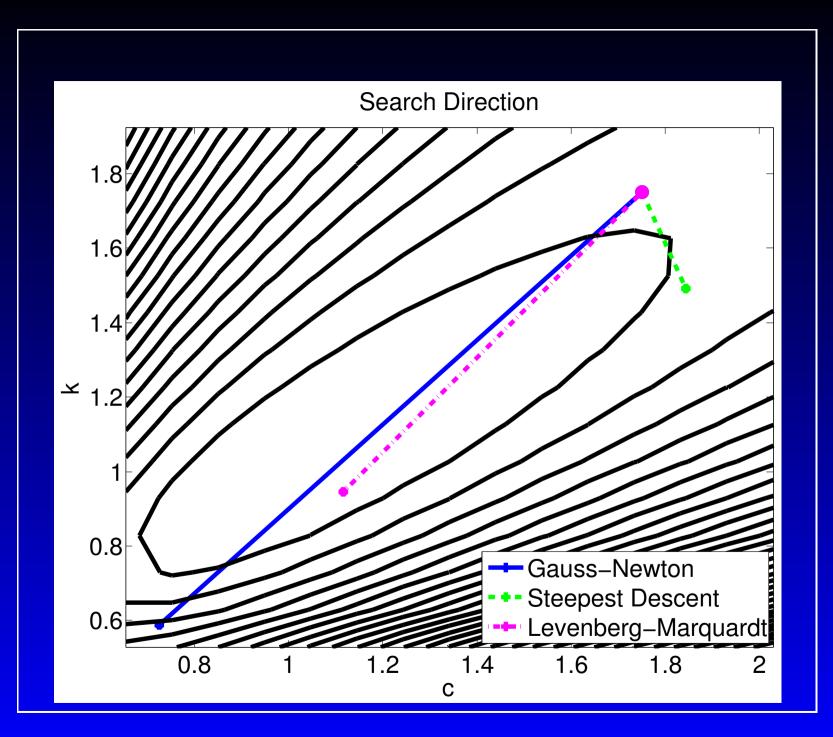
- If R'(x) does not have full column rank, or if the matrix R'(x)<sup>T</sup> R'(x) may be ill-conditioned, you should be using Levenberg-Marquardt.
- The LM direction is a descent direction.
- Line search can be applied.
- Can show that if  $\nu_k = O(||R(x_k)||)$  then LMA converges quadratically for (nice) zero residual problems.

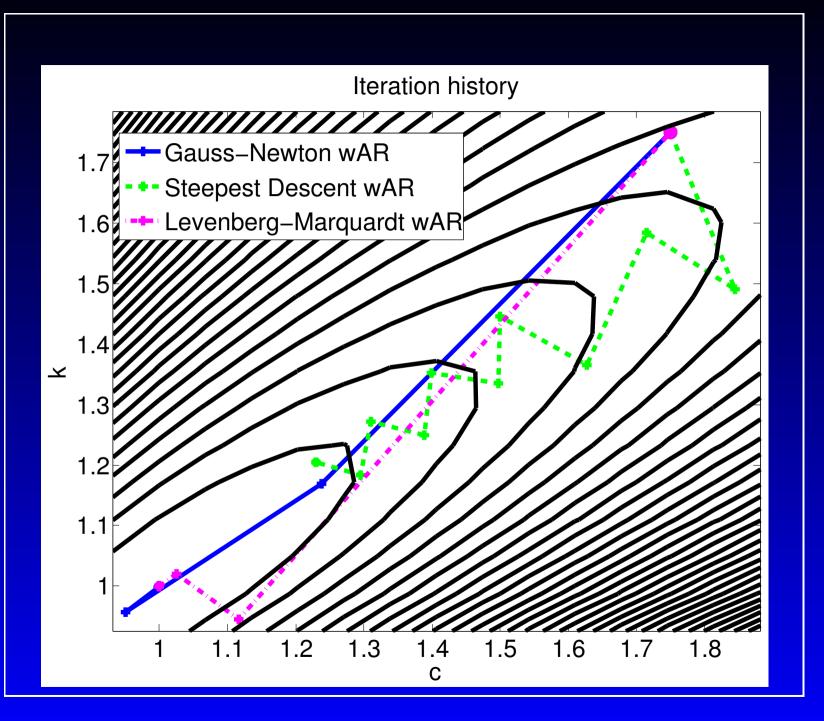
### **Numerical Example**

• Recall

$$u'' + cu' + ku = 0; u(0) = u_0; u'(0) = 0.$$

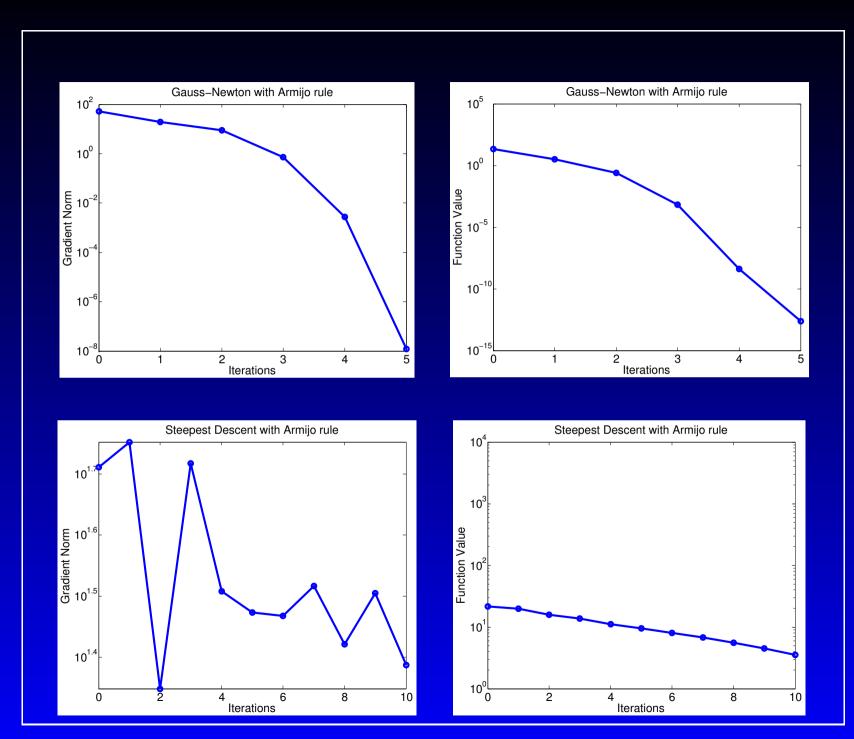
- Let the true parameters be x\* = [c, k]<sup>T</sup> = [1, 1]<sup>T</sup>.
  Assume we have M = 100 data u<sub>j</sub> from equally spaced time points on [0, 10].
- We will use the initial iterate  $x_0 = [3, 1]^T$  with Steepest Descent, Gauss-Newton and Levenberg-Marquardt methods using the Armijo Rule.

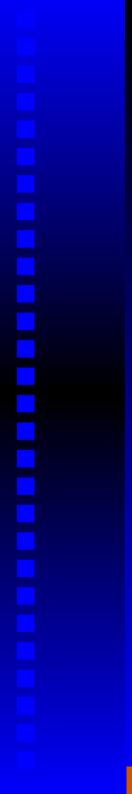




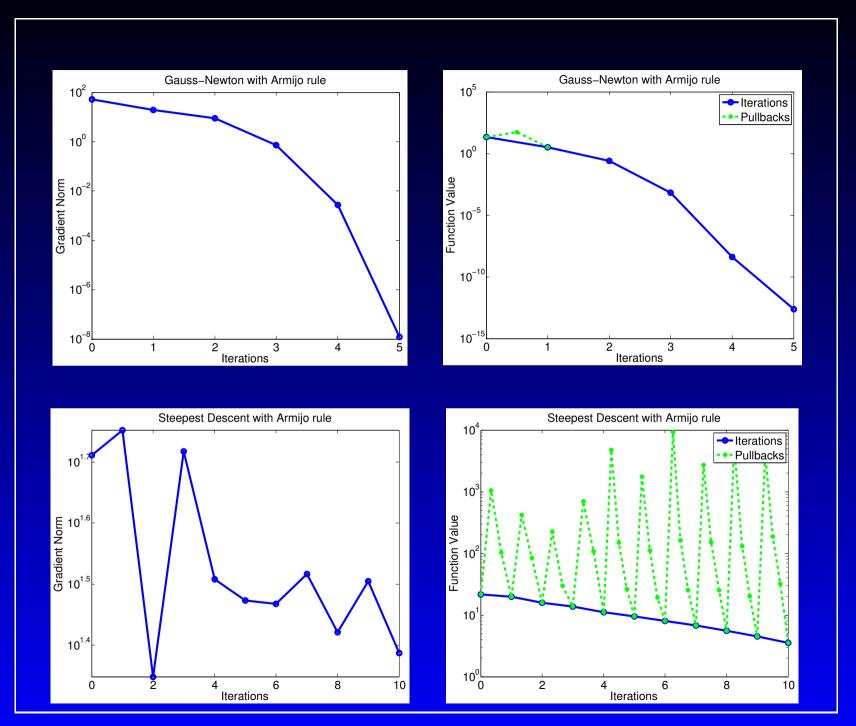


**OSU** Oregon State University





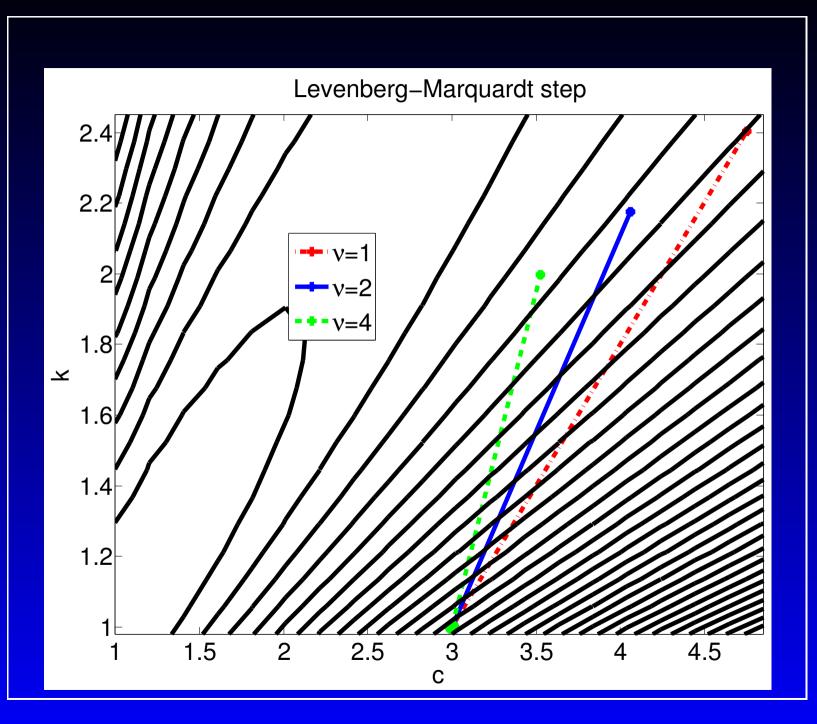
**OSU** Oregon State University



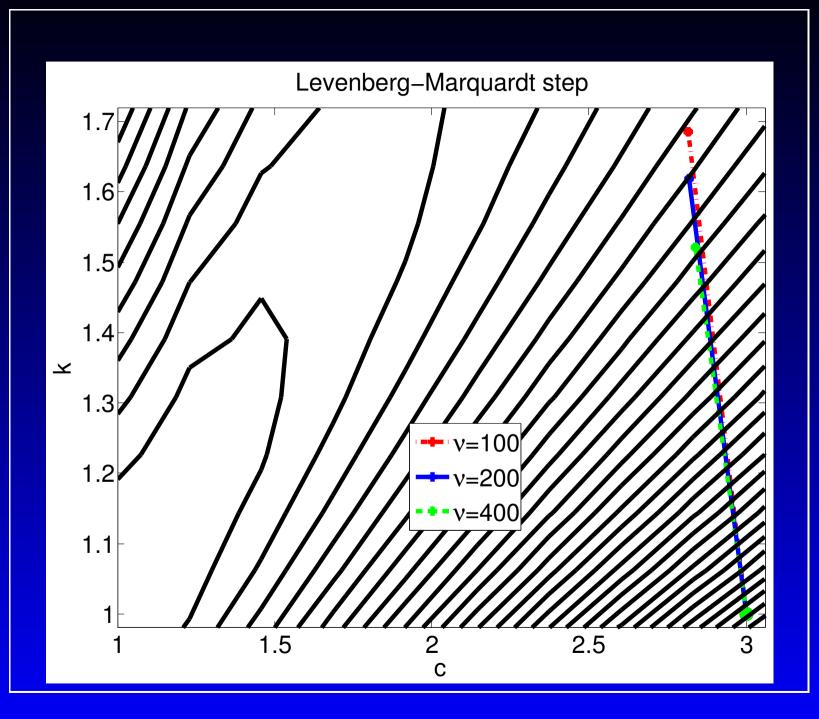
OSU – AMC Seminar, Nov. 2007 – p. 19

## Word of Caution for LM

- Note that blindly increasing v until a sufficient decrease criteria is satisfied is NOT a good idea (nor is it a line search).
- Changing  $\nu$  changes direction as well as step length.
- Increasing  $\nu$  does insure your direction is descending.
- But, increasing  $\nu$  too much makes your step length small.









#### **Line Search Improvements**

#### Step length control with polynomial models

 If λ = 1 does not give sufficient decrease, use f(x<sub>k</sub>), f(x<sub>k</sub> + d) and ∇f(x<sub>k</sub>) to build a quadratic model of

$$\xi(\lambda) = f(x_k + \lambda d)$$

- Compute the  $\lambda$  which minimizes model of  $\xi$ .
- If this fails, create cubic model.
- If this fails, switch back to Armijo.
- *Exact line search* is (usually) not worth the cost.

#### **Trust Region Methods**

• Let  $\Delta$  be the radius of a ball about  $x_k$  inside which the quadratic model

$$m_k(x) = f(x_k) + \nabla f(x_k)^T (x - x_k) + \frac{1}{2} (x - x_k)^T H_k(x - x_k)$$

can be "trusted" to accurately represent f(x).

- $\Delta$  is called the *trust region radius*.
- $T(\Delta) = \{x \mid ||x x_k|| \le \Delta\}$  is called the *trust* region.

## **Trust Region Problem**

- We compute a trial solution  $x_t$ , which may or may not become our next iterate.
- We define the trial solution in terms of a trial step  $x_t = x_k + s_t$ .
- The trial step is the (approximate) solution to the *trust region problem*

$$\min_{\|s\| \le \Delta} m_k(x_k + s).$$

I.e., find the trial solution in the trust region which minimizes the quadratic model of f.

## **Unidirectional TR Algorithm**

Suppose we limit our search of  $s_t$  to the direction of  $d^{SD}$ . Then the trust region problem becomes

$$\min_{x_k - \lambda \nabla f(x_k) \in \mathcal{T}(\Delta_k)} m_k(x_k - \lambda \nabla f(x_k)),$$

$$m_{k}(x_{k} - \lambda \nabla f(x_{k})) = f(x_{k}) + \nabla f(x_{k})^{T} (-\lambda \nabla f(x_{k}))$$
$$+ \frac{1}{2} (-\lambda \nabla f(x_{k}))^{T} H_{k} (-\lambda \nabla f(x_{k}))$$
$$\hat{\lambda} = \min\left(\frac{||\nabla f(x_{k})||^{2}}{\nabla f(x_{k})^{T} H_{k} \nabla f(x_{k})}, \frac{\Delta_{c}}{||\nabla f(x_{k})||}\right)$$

OSU – AMC Seminar, Nov. 2007 – p. 26

Oregon State University

# **Changing Trust Region**

- Test the trial solution  $x_t$  using *predicted* and *actual* reductions.
- If  $\mu = ared/pred$  too low, reject trial step and decrease trust region radius.
- If  $\mu$  sufficiently high, we can accept the trial step, and possibly even increase the trust region radius (becoming more aggressive).

#### **Exact Solution to TR Problem**

**Theorem 1** Let  $g \in \mathbb{R}^N$  and let A be a symmetric  $N \times N$  matrix. Let

$$m(s) = g^T s + s^T A s / 2.$$

Then a vector s is a solution to

 $\min_{\|s\| \le \Delta} m(s)$ 

if and only if there is some  $\nu \geq 0$  such that

 $(A + \nu I)s = -g$ 

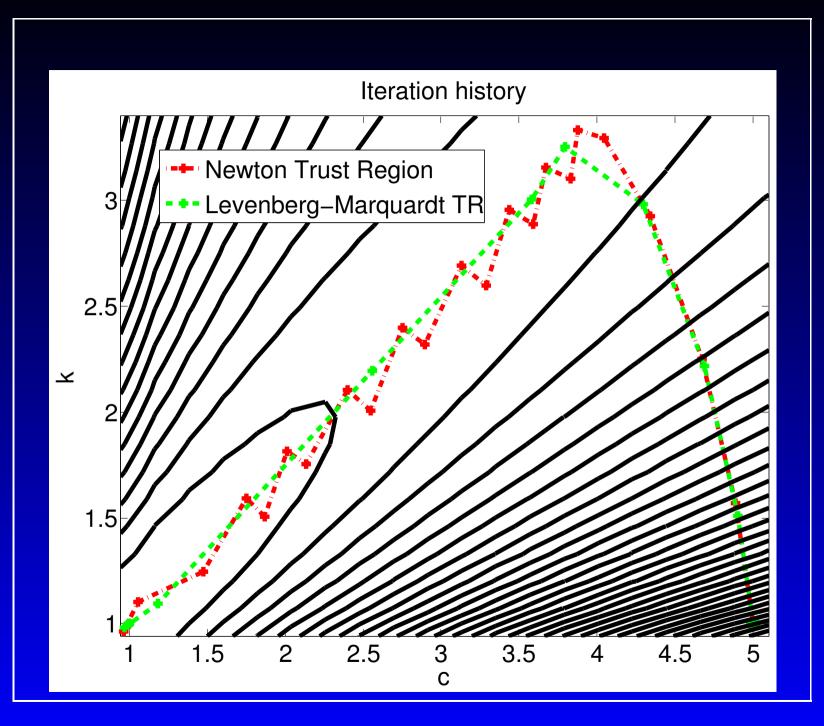
and either 
$$\nu = 0$$
 or  $||s|| = \Delta$ .

Oregon State University

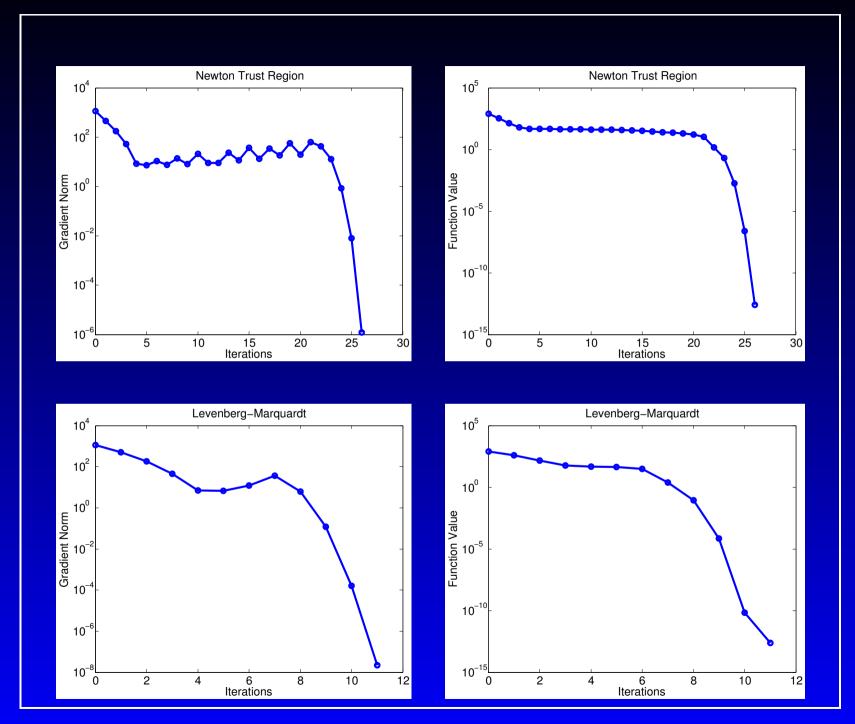
OSU – AMC Seminar, Nov. 2007 – p. 28

## LM as a TRM

- Instead of controlling  $\Delta$  in response to  $\mu = ared/pred$ , adjust  $\nu$ .
- Start with  $\nu = \nu_0$  and compute  $x_t = x_k + s^{LM}$ .
- If μ = ared/pred too small, reject trial and increase ν. Recompute trial (only requires a linear solve).
- If  $\mu$  sufficiently high, accept trial and possibly *decrease*  $\nu$  (maybe to 0).
- Once trial accepted as an iterate, compute R, f, R', ∇f and test ||∇f|| for termination.







OSU – AMC Seminar, Nov. 2007 – p. 31

**OSU** Oregon State University

# Summary

- If Gauss-Newton fails, use Levenberg-Marquardt for low-residual nonlinear least squares problems.
  - Achieves global convergence expected of Steepest Descent, but limits to quadratically convergent method near minimizer.
- Use either a trust region or line search to ensure sufficient decrease.
  - Can use trust region with any method that uses quadratic model of *f*.
  - Can only use line search for descent directions.

#### References

- Levenberg, K., "A Method for the Solution of Certain Problems in Least-Squares", Quarterly Applied Math. 2, pp. 164-168, 1944.
- 2. Marquardt, D., "An Algorithm for Least-Squares Estimation of Nonlinear Parameters", SIAM Journal Applied Math., Vol. 11, pp. 431-441, 1963.
- Moré, J. J., "The Levenberg-Marquardt Algorithm: Implementation and Theory", Numerical Analysis, ed. G. A. Watson, Lecture Notes in Mathematics 630, Springer Verlag, 1977.
- 4. Kelley, C. T., "Iterative Methods for Optimization", Frontiers in Applied Mathematics 18, SIAM, 1999. http://www4.ncsu.edu/~ctk/matlab\_darts.html.
- 5. Wadbro, E., "Additional Lecture Material", Optimization 1 / MN1, Uppsala Universitet, http://www.it.uu.se/edu/course/homepage/opt1/ht07/.