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Summary from Last Time
• Unconstrained Optimization

• Nonlinear Least Squares
• Parameter ID Problem

Sample Problem:

u′′ + cu′ + ku = 0; u(0) = u0; u
′(0) = 0 (1)

Assume data {uj}
M
j=0 is given for some times tj on the

interval [0, T ]. Find x=[c, k]T such that the following
objective function is minimized:

f(x) =
1

2

M
∑

j=1

|u(tj; x) − uj|
2 .
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Summary Continued
Update step

xk+1 = xk + sk

• Newton’s Method – quadratic model

• Gauss-Newton – neglect 2nd order terms

• Steepest Descent – always descent direction

• Levenberg-Marquardt – like a weighted average
of GN and SD with parameter ν
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Summary of Methods
• Newton:

mN

k
(x) = f(xk) + ∇f(xk)T (x − xk) +

1

2
(x − xk)T

∇
2f(xk)(x − xk)

• Gauss-Newton:

mGN

k
(x) = f(xk) + ∇f(xk)T (x − xk) +

1

2
(x − xk)T R′(xk)T R′(xk)(x − xk)

• Steepest Descent:

mSD

k
(x) = f(xk) + ∇f(xk)T (x − xk) +

1

2
(x − xk)T

1

λk

I(x − xk)

• Levenberg-Marquardt:

mLM

k
(x) = f(xk)+∇f(xk)T (x−xk)+

1

2
(x−xk)T

“

R′(xk)T R′(xk) + νkI
”

(x−xk)

0 = ∇mk(x) =⇒ Hksk = −∇f(xk)
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Levenberg-Marquardt Idea
• If iterate is not close enough to minimizer so that

GN does not give a descent direction, increase ν

to take more of a SD direction.
• As you get closer to minimizer, decrease ν to take

more of a GN step.
• For zero-residual problems, GN converges

quadratically (if at all)
• SD converges linearly (guaranteed)
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LM Alternative Perspective
• Approximate Hessian may not be positive

definite (or well-conditioned), increase ν to add
regularity.

• As you get closer to minimizer, Hessian will
become positive definite. Decrease ν as less
regularization is necessary.

• Regularized problem is “nearby problem”, want
to solve actual problem as soon as feasible.
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Step Length
Steepest Descent Method

• We define the steepest descent direction to be
dk = −∇f(xk). This defines a direction but not a
step length.

• We define the Steepest Descent update step to be
sSD
k = λkdk for some λk > 0.

• We would like to choose λk so that f(x)

decreases sufficiently.
• Could ask simply that

f(xk+1) < f(xk)
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Predicted Reduction
Consider a linear model of f(x)

mk(x) = f(xk) + ∇f(xk)
T (x − xk).

Then the predicted reduction using the Steepest
Descent step (xk+1 = xk − λk∇f(xk)) is

pred = mk(xk) − mk(xk+1) = λk‖∇f(xk)‖
2.

The actual reduction in f is

ared = f(xk) − f(xk+1).
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Sufficient Decrease
We define a sufficient decrease to be when

ared > α pred,

where α ∈ (0, 1) (e.g., 10−4 or so).
Note: α = 0 is simple decrease.
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Armijo Rule
We can define a strategy for determining the step
length in terms of a sufficient decrease criteria as
follows:
Let λ = βm, where β ∈ (0, 1) (think 1

2) and m ≥ 0 is
the smallest integer such that

ared > α pred,

where α ∈ (0, 1).
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Line Search
• The Armijo Rule is an example of a line search:

Search on a ray from xk in direction of locally
decreasing f .

• Armijo procedure is to start with m = 0 then
increment m until sufficient decrease is achieved,
i.e., λ = βm = 1, β, β2, . . .

• This approach is also called “backtracking” or
performing “pullbacks”.

• For each m a new function evaluation is required.
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Damped Gauss-Newton
• Armijo Rule applied to the Gauss-Newton step is

called the Damped Gauss-Newton Method.
• Recall

dGN = −
(

R′(x)TR′(x)
)−1

R′(x)TR(x).

• Note that if R′(x) has full column rank, then

0 > ∇f(x)TdGN =

−
(

R′(x)TR(x)
)T (

R′(x)TR′(x)
)−1

R′(x)TR(x)

so the GN direction is a descent direction.
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Damped Gauss-Newton Step
Thus the step for Damped Gauss-Newton is

sDGN = βmdGN

where β ∈ (0, 1) and m is the smallest non-negative
integer to guarantee sufficient decrease.
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Levenberg-Marquardt-Armijo
• If R′(x) does not have full column rank, or if the

matrix R′(x)TR′(x) may be ill-conditioned, you
should be using Levenberg-Marquardt.

• The LM direction is a descent direction.
• Line search can be applied.
• Can show that if νk = O(‖R(xk)‖) then LMA

converges quadratically for (nice) zero residual
problems.
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Numerical Example
• Recall

u′′ + cu′ + ku = 0; u(0) = u0; u
′(0) = 0.

• Let the true parameters be x∗ = [c, k]T = [1, 1]T .
Assume we have M = 100 data uj from equally
spaced time points on [0, 10].

• We will use the initial iterate x0 = [3, 1]T with
Steepest Descent, Gauss-Newton and
Levenberg-Marquardt methods using the Armijo
Rule.
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Word of Caution for LM
• Note that blindly increasing ν until a sufficient

decrease criteria is satisfied is NOT a good idea
(nor is it a line search).

• Changing ν changes direction as well as step
length.

• Increasing ν does insure your direction is
descending.

• But, increasing ν too much makes your step
length small.
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Line Search Improvements
Step length control with polynomial models

• If λ = 1 does not give sufficient decrease, use
f(xk), f(xk + d) and ∇f(xk) to build a quadratic
model of

ξ(λ) = f(xk + λd)

• Compute the λ which minimizes model of ξ.
• If this fails, create cubic model.
• If this fails, switch back to Armijo.
• Exact line search is (usually) not worth the cost.
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Trust Region Methods
• Let ∆ be the radius of a ball about xk inside

which the quadratic model

mk(x) = f(xk) + ∇f(xk)
T (x − xk)

+
1

2
(x − xk)

THk(x − xk)

can be “trusted” to accurately represent f(x).
• ∆ is called the trust region radius.
• T (∆) = {x| ‖x − xk‖ ≤ ∆} is called the trust

region.
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Trust Region Problem
• We compute a trial solution xt, which may or

may not become our next iterate.
• We define the trial solution in terms of a trial step

xt = xk + st.
• The trial step is the (approximate) solution to the

trust region problem

min
‖s‖≤∆

mk(xk + s).

I.e., find the trial solution in the trust region
which minimizes the quadratic model of f .
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Unidirectional TR Algorithm
Suppose we limit our search of st to the direction of
dSD. Then the trust region problem becomes

min
xk−λ∇f(xk)∈T (∆k)

mk(xk − λ∇f(xk)),

mk(xk−λ∇f(xk)) = f(xk)+∇f(xk)
T (−λ∇f(xk))

+
1

2
(−λ∇f(xk))

THk(−λ∇f(xk))

λ̂ = min

(

||∇f(xk)‖
2

∇f(xk)THk∇f(xk)
,

∆c

‖∇f(xk)‖

)
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Changing Trust Region
• Test the trial solution xt using predicted and

actual reductions.
• If µ = ared/pred too low, reject trial step and

decrease trust region radius.
• If µ sufficiently high, we can accept the trial step,

and possibly even increase the trust region radius
(becoming more aggressive).
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Exact Solution to TR Problem
Theorem 1 Let g ∈ R

N and let A be a symmetric
N × N matrix. Let

m(s) = gTs + sTAs/2.

Then a vector s is a solution to

min
‖s‖≤∆

m(s)

if and only if there is some ν ≥ 0 such that

(A + νI)s = −g

and either ν = 0 or ‖s‖ = ∆.
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LM as a TRM
• Instead of controlling ∆ in response to

µ = ared/pred, adjust ν.
• Start with ν = ν0 and compute xt = xk + sLM .
• If µ = ared/pred too small, reject trial and

increase ν. Recompute trial (only requires a
linear solve).

• If µ sufficiently high, accept trial and possibly
decrease ν (maybe to 0).

• Once trial accepted as an iterate, compute R, f ,
R′, ∇f and test ‖∇f‖ for termination.
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Summary
• If Gauss-Newton fails, use Levenberg-Marquardt

for low-residual nonlinear least squares problems.
• Achieves global convergence expected of

Steepest Descent, but limits to quadratically
convergent method near minimizer.

• Use either a trust region or line search to ensure
sufficient decrease.
• Can use trust region with any method that

uses quadratic model of f .
• Can only use line search for descent

directions.
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