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Outline
• Unconstrained Optimization
• Newton’s Method

• Inexact Newton
• Quasi-Newton

• Nonlinear Least Squares
• Gauss-Newton Method
• Steepest Descent
• Levenberg-Marquardt Method

OSU – AMC Seminar, Nov. 2007 – p. 2



Unconstrained Optimization
• Minimize function f of N variables
• I.e., find local minimizer x∗ such that

f(x∗) ≤ f(x) for all x near x∗

• Different from constrained optimization

f(x∗) ≤ f(x) for all x ∈ U near x∗

• Different from global minimizer

f(x∗) ≤ f(x) for all x (possibly in U )
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Sample Problem
Parameter Identification
Consider

u′′ + cu′ + ku = 0; u(0) = u0; u
′(0) = 0 (1)

where u represents the motion of an unforced
harmonic oscillator (e.g., spring). We may assume u0

is known, and data {uj}
M
j=1 is given for some times tj

on the interval [0, T ].
Now we can state a parameter identification problem
to be: find x = [c, k]T such that the solution u(t) to
(1) using parameters x is (as close as possible to) uj

when evaluated at times tj.
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Objective Function

Consider the following formulation of the Parameter
Identification problem:
Find x=[c, k]T such that the following objective
function is minimized:

f(x) =
1

2

M
∑

j=1

|u(tj; x) − uj|
2 .

This is an example of a nonlinear least squares
problem.
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Iterative Methods
An iterative method for minimizing a function f(x)
usually has the following parts:

• Choose an initial iterate x0

• For k = 0, 1, . . .
• If xk optimal, stop.
• Determine a search direction d

and a step size λ
• Set xk+1 = xk + λd
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Convergence Rates
The sequence {xk}

∞
k=1 is said to converge to x∗ with

rate p and rate constant C if

lim
k→∞

‖xk+1 − x∗‖

‖xk − x∗‖p
= C.

• Linear: p = 1 and 0 < C < 1, such that error
decreases.

• Quadratic: p = 2, doubles correct digits per
iteration.

• Superlinear: If p = 1, C = 0. Faster than linear.
Includes quadractic convergence, but also
intermediate rates.
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Necessary Conditions
Theorem 1 Let f be twice continuously
differentiable, and let x∗ be a local minimizer of f .
Then

∇f(x∗) = 0 (2)
and the Hessian of f , ∇2f(x∗), is positive
semidefinite.

Recall A positive semidefinite means

xTAx ≥ 0 ∀x ∈ R
N .

Equation (2) is called the first-order necessary
condition.
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Hessian
Let f : R

N → R be twice continuously differentiable
(C2), then

• The gradient of f is

∇f =

[

∂f

∂x1
, · · · ,

∂f

∂xN

]T

• The Hessian of f is

∇2f =









∂2f

∂x2

1

· · · ∂2f
∂x1∂xN... . . . ...

∂2f
∂xN∂x1

· · · ∂2f

∂x2

N








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Sufficient Conditions
Theorem 2 Let f be twice continuously differentiable
in a neighborhood of x∗, and let

∇f(x∗) = 0

and the Hessian of f , ∇2f(x∗), be positive
semidefinite. Then x∗ is a local minimizer of f .

Note: second derivative information is required to be
certain, for instance, if f(x) = x3.
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Quadratic Objective Functions
Suppose

f(x) =
1

2
xTHx − xT b

then we have that

∇2f(x) = H

and if H is symmetric (assume it is)

∇f(x) = Hx − b.

Therefore, if H is positive semidefinite, then the
unique minimizer x∗ is the solution to

Hx∗ = b.
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Newton’s Method
Newton’s Method solves for the minimizer of the
local quadratic model of f about the current iterate xk

given by

mk(x) = f(xk) + ∇f(xk)
T (x − xk)

+
1

2
(x − xk)

T∇2f(xk)(x − xk).

If ∇2f(xk) is positive definite, then the minimizer
xk+1 of mk is the unique solution to

0 = ∇mk(x) = ∇f(xk) + ∇2f(xk)(x − xk). (3)
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Newton Step
The solution to (3) is computed by solving

∇2f(xk)sk = −∇f(xk)

for the Newton Step sN
k . Then the Newton update is

defined by
xk+1 = xk + sN

k .

Note: the step sN
k has both direction and length.

Variants of Newton’s Method modify one or both of
these.
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Standard Assumptions
Assume that f and x∗ satisfy the following

1. Let f be twice continuously differentiable and

‖∇2f(x) −∇2f(y)‖ ≤ γ‖x − y‖.

2. ∇f(x∗) = 0.
3. ∇2f(x∗) is positive definite.
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Convergence Rate
Theorem 3 Let the Standard Assumptions hold. Then
there exists a δ > 0 such that if x0 ∈ Bδ(x

∗), the
Newton iteration converges quadratically to x∗.

• I.e., ‖ek+1‖ ≤ K‖ek‖
2.

• If x0 is not close enough, Hessian may not be
positive definite.

• If you start close enough, you stay close enough.
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Problems (and solutions)
• Need derivatives

• Use finite difference approximations
• Needs solution of linear system at each iteration

• Use iterative linear solver like CG
(Inexact Newton)

• Hessians are expensive to find (and factor)
• Use chord (factor once) or Shamanskii
• Use Quasi-Newton (update Hk to get Hk+1)
• Use Gauss-Newton (first order approximate

Hessian)
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Nonlinear Least Squares
Recall,

f(x) =
1

2

M
∑

j=1

|u(tj; x) − uj|
2 .

Then for x = [c, k]T

∇f(x) =

[

∑M
j=1

∂u(tj ;x)
∂c

(u(tj; x) − uj)
∑M

j=1
∂u(tj ;x)

∂k
(u(tj; x) − uj)

]

= R′(x)TR(x)

where R(x) = [u(t1; x) − u1, . . . , u(tM ; x) − uM ]T is
called the residual.
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Approximate Hessian
In terms of the residual R, the Hessian of f becomes

∇2f(x) = R′(x)TR′(x) +
M

∑

j=1

rj(x)∇2rj(x)

where rj(x) is the jth element of the vector R(x).
The second term requires the computation of M
Hessians, each size N × N . However, if we happen to
be solving a zero residual problem, this second order
term goes to zero. One can argue that for small
residual problems (and good initial iterates) the
second order term is neglibible.
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Gauss-Newton Method
The equation defining the Newton step

∇2f(xk)sk = −∇f(xk)

becomes

R′(xk)
TR′(xk)sk = −∇f(xk)

= −R′(xk)
TR(xk).

We define the Gauss-Newton step as the solution sGN
k

to this equation.

You can expect close to quadratic convergence for
small residual problems. Otherwise, not even linear is
guaranteed.
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Numerical Example
• Recall

u′′ + cu′ + ku = 0; u(0) = u0; u
′(0) = 0.

• Let the true parameters be x∗ = [c, k]T = [1, 1]T .
Assume we have M = 100 data uj from equally
spaced time points on [0, 10].

• We will use the initial iterate x0 = [1.1, 1.05]T

with Newton’s Method and Gauss-Newton.
• We compute gradients with forward differences,

analytical 2 × 2 matrix inverse, and use ode15s
for time stepping the ODE.
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Newton Gauss-Newton
k ||∇f(xk)|| f(xk) ||∇f(xk)|| f(xk)

0 2.330e+01 7.881e-01 2.330e+01 7.881e-01
1 6.852e+00 9.817e-02 1.767e+00 6.748e-03
2 4.577e-01 6.573e-04 1.016e-02 4.656e-07
3 3.242e-03 3.852e-08 1.844e-06 2.626e-13
4 4.213e-07 2.471e-13

Table 1: Parameter identification problem, locally
convergent iterations. CPU time Newton: 3.4s, Gauss-
Newton: 1s.

OSU – AMC Seminar, Nov. 2007 – p. 23



0.96 0.98 1 1.02 1.04 1.06 1.08 1.1 1.12
0.96

0.98

1

1.02

1.04

1.06

1.08

c

k

Iteration history

 

 

Newton’s Method
Gauss−Newton

OSU – AMC Seminar, Nov. 2007 – p. 24



1 1.5 2 2.5 3 3.5

1

1.5

2

2.5

3

3.5

c

k

Search Direction

 

 

Newton’s Method
Gauss−Newton

OSU – AMC Seminar, Nov. 2007 – p. 25



1 2 3 4 5 6 7
1

1.5

2

2.5

3

c

k

Search Direction

 

 

Newton’s Method
Gauss−Newton

OSU – AMC Seminar, Nov. 2007 – p. 26



Global Convergence
• Newton direction may not be a descent direction

(if Hessian not positive definite).
• Thus Newton (or any Newton-based method)

may increase f if x0 not close enough. Not
globally convergent.

• Globally convergent methods ensure (sufficient)
decrease in f .

• The steepest descent direction is always a descent
direction.
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Steepest Descent Method
• We define the steepest descent direction to be

dk = −∇f(xk). This defines a direction but not a
step size.

• We define the Steepest Descent update step to be
sSD
k = λkdk for some λk > 0.

• We will talk later about ways of choosing λ.
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Steepest Descent Comments
• Steepest Descent direction is best direction

locally.
• The negative gradient is perpendicular to level

curves.
• Solving for sSD

k is equivalent to assuming
∇2f(xk) = I/λk.

• In general you can only expect linear
convergence.

• Would be good to combine global convergence
property of Steepest Descent with superlinear
convergence rate of Gauss-Newton.
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Levenberg-Marquardt Method
Recall the objective function

f(x) =
1

2
R(x)TR(x)

where R is the residual. We define the
Levenberg-Marquardt update step sLM

k to be the
solution of

(

R′(xk)
TR′(xk) + νkI

)

sk = −R′(xk)
TR(xk)

where the regularization parameter νk is called the
Levenberg-Marquardt parameter, and it is chosen such
that the approximate Hessian R′(xk)

TR′(xk) + νkI is
positive definite.
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Levenberg-Marquardt Notes
• Robust with respect to poor initial conditions and

larger residual problems.
• Varying ν involves interpolation between GN

direction (ν = 0) and SD direction (large ν).
• We will talk later on strategies for choosing ν.
• See

doc lsqnonlin
for MATLAB instructions for LM and GN.
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Summary
• Taylor series with remainder:

f(x) = f(xk) + ∇f(xk)T (x − xk) +
1

2
(x − xk)T

∇
2f(ξ)(x − xk)

• Newton:

mN

k
(x) = f(xk) + ∇f(xk)T (x − xk) +

1

2
(x − xk)T

∇
2f(xk)(x − xk)

• Steepest Descent:

mSD

k
(x) = f(xk) + ∇f(xk)T (x − xk) +

1

2
(x − xk)T

1

λk

I(x − xk)

• Gauss-Newton:

mGN

k
(x) = f(xk) + ∇f(xk)T (x − xk) +

1

2
(x − xk)T R′(xk)T R′(xk)(x − xk)

• Levenberg-Marquardt:

mLM

k
(x) = f(xk)+∇f(xk)T (x−xk)+

1

2
(x−xk)T

“

R′(xk)T R′(xk) + νkI
”

(x−xk)
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