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Math Modeling and Simulation of Physical Processes

• Define the physical problem

• Create a mathematical (PDE) model
• Systems of PDEs, ODEs, algebraic equations
• Define Initial and or boundary conditions to get a

well-posed problem

• Create a Discrete (Numerical) Model
• Discretize the domain → generate the grid → obtain

discrete model
• Solve the discrete system

• Analyse Errors in the discrete system
• Consistency, stability and convergence analysis
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Contents
• Partial Differential Equations (PDEs)

• Conservation Laws: Integral and Differential
Forms

• Classification of PDEs: Elliptic, parabolic and
Hyperbolic

• Finite difference methods
• Analysis of Numerical Schemes: Consistency,

Stability, Convergence
• Finite Volume and Finite element methods
• Iterative Methods for large sparse linear systems
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Partial Differential Equations
• PDEs are mathematical models of continuous physical

phenomenon in which a dependent variable, say u, is a
function of more than one independent variable, say t (time),
and x (eg. spatial position).

• PDEs derived by applying a physical principle such as
conservation of mass, momentum or energy. These
equations, governing the kinematic and mechanical
behaviour of general bodies are referred to as Conservation
Laws. These laws can be written in either the strong of
differential form or an integral form.

• Boundary conditions, i.e., conditions on the (finite)
boundary of the domain ann/or initial conditions (for
transient problems) are required to obtain a well posed
problem.
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PDEs (continued)
• For simplicity, we will deal only with single

PDEs (as opposed to systems of several PDEs)
with only two independent variables,
• either two space variables, denoted by x and

y, or
• one space variable denoted by x and one time

variable denoted by t

• Partial derivatives with respect to independent
variables are denoted by subscripts, for example
• ut = ∂u

∂t

• uxy = ∂2u
∂x∂y
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Well Posed Problems
• Boundary conditions, i.e., conditions on the

(finite) boundary of the domain and/or initial
conditions (for transient problems) are required to
obtain a well posed problem.

• Properties of a well posed problem:
• Solution exists
• Solution is unique
• Solution depends continuously on the data
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Classifications of PDEs
• The Order of a PDE = the highest-order partial

derivative appearing in it. For example,
• The advection equation ut + ux = 0 is a first

order PDE.
• The Heat equation ut = uxx is a second order

PDE.

• A PDE is linear if the coefficients of the partial
derivates are not functions of u, for example
• The advection equation ut + ux = 0 is a linear

PDE.
• The Burgers equation ut + uux = 0 is a

nonlinear PDE.
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Classifications of PDEs (continued)
Second-order linear PDEs of general form

auxx + buxy + cuyy + dux + euy + fu + g = 0

are classified based on the value of the discriminant b2 − 4ac
• b2 − 4ac > 0: hyperbolic

• e.g., wave equation : utt − uxx = 0

• Hyperbolic PDEs describe time-dependent, conservative physical
processes, such as convection, that are not evolving toward steady
state.

• b2 − 4ac = 0: parabolic
• e.g., heat equation utt − uxx = 0

• Parabolic PDEs describe time-dependent dissipative physical
processes, such as diffusion, that are evolving toward steady state.

• b2 − 4ac < 0: elliptic
• e.g., Laplace equation: uxx + uyy = 0

• Elliptic PDEs describe processes that have alreay reached steady
states, and hence are time-independent.
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Parabolic PDEs: Initial-Boundary value problems

• Example: One dimensional (in space) Heat Equation for u = u(t, x)

ut = κuxx, 0 ≤ x ≤ L, t ≥ 0

• with
• Boundary conditions: u(t, 0) = u0, u(t, L) = uL, and
• Initial conditions: u(0, x) = g(x)

t

tp

0 x
xp L

p

domain of dependence

 domain of influence

0
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Elliptic PDEs: Boundary value problems

• Example: Model of steady heat conduction in a two dimensional (in
space) domain, governed by the Laplace equation for the temperature
T = T (x, y)

Txx + Tyy = 0, 0 ≤ x ≤ W, 0 ≤ y ≤ H

• with boundary conditions
• T (x, 0) = T1, T (x, H) = T3

• T (0, y) = T4, T (W, y) = T2

y

yp

0 x
xp W

p

0

H

T1

T2

T3

T4
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Hyperbolic PDEs: Initial-Boundary value problems

• Example: One-dimensional (in space) wave equation for u = u(t, x)

utt = c2uxx, 0 ≤ x ≤ L, t ≥ 0

• with boundary conditions
• Boundary conditions u(t, 0) = u0, u(t, L) = uL

• Initial Conditions u(0, x) = f(x), ut|t=0 = g(x)

t

tp

0 x
xp L

p

domain
of dependence

 domain of
influence

0

+c –c
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Finite Difference Methods (FDM): Discretization

• Suppose that we are solving for u = u(t, x) on the domain
Ω = [0, T ] × [0, L]. we discretize the domain Ω by partitioning the
spatial interval [0, L] into m + 2 grid points
x0, x1, . . . , xm, xm+1 = L, such that

∆xj = xj+1 − xj , j = 0, 1, 2, . . .m

In the case that the m + 2 spatial points xj are equally spaced, we have

∆x = ∆xj , ∀j

-

-�∆x

xq q q q q q q q q q q

0 = x0 x1 x2 . . . . . . xj−1 xj xj+1 . . . xm xm+1 = L

• We similarly discretize the temporal domain [0, T ] into discrete time
levels tk with time step k = ∆t.
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Finite Difference Methods: Discretization
• The numerical solution to the PDE is an approximation to the exact

solution that is obtained using a discrete represntation to the PDE at the
grid points xj in the discrete spatial mesh at every time level tk. Let us
denote this numerical solution as U such that

Un
j ≈ u(tk, xj)

• Thus, the numerical solution is a collection of finite values,

Un = [Un
1 , Un

2 , . . . , Un
m]

at each time level tn.
• The boundary conditions determine the values of Un

0 and Un
m+1 for all

n. The initial conditions determine the values of U 0 at each spatial grid
point.
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Finite Difference Methods (continued)

• Recall the definition of the derivative from introductory Calculus:

ux(xj) = lim
h→0

u(xj + h) − u(xj)

h

= lim
h→0

u(xj) − u(xj − h)

h

= lim
h→0

u(xj + h) − u(xj − h)

2h

• We use these formula with a small finite value of h = ∆x, i.e., we
approximate

ux(xj) ≈
u(xj + h) − u(xj)

h
(Forward difference)

≈
u(xj) − u(xj − h)

h
(Backward difference)

≈
u(xj + h) − u(xj − h)

2h
(Centered difference)
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Error in FDM: Local Truncation Error
• The local truncation error (LTE) is the error that results by substituting

the exact solution into the finite difference formula.

• Errors in the approximations to the derivative are calculated using
Taylor approximations around a grid point xj . For example,•

u(xj+1) = u(xj + ∆x)

= u(xj) + ux(xj)∆x + uxx(xj)
(∆x)2

2
+ O((∆x)3)

• Thus,

ux(xj) =
u(xj+1) − u(xj)

∆x
+ uxx(xj)

∆x

2
+ O((∆x)2)

• The forward difference is a first order accurate approximation to the
partial derivative ux at xj and the LTE is O(∆x).
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Error in FDM: LTE

• The backward difference is a first order accurate
approximation to the partial derivative ux at xj and the LTE
is O(∆x).

• The centered difference is a second order accurate
approximation to the partial derivative ux at xj and the LTE
is O((∆x)2).

• Note that the LTE in all these approximations goes to zero
as ∆x goes to zero.
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FDM for Parabolic PDEs: The Heat Equation

• Consider the initial-boundary value problem for the heat equation

ut = κuxx, 0 ≤ x ≤ 1, t ≥ 0

u(0, x) = f(x), Initial Condition

u(t, 0) = α, Boundary Condition at x = 0

u(t, 1) = β, Boundary Condition at x = 1

• Discretize the spatial domain [0, 1] into m + 2 grid points using a
uniform mesh step size ∆x = 1/(m + 1) . Denote the spatial grid
points by xj , j = 0, 1, . . .m + 1.

-

-�∆x

xq q q q q q q q q q q

0 = x0 x1 x2 . . . . . . xj−1 xj xj+1 . . . xm xm+1 = 1
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FDM for Parabolic PDEs: The Heat Equation

• Similarly discretize the temporal domain into temporal grid points
tk = k∆t for suitably chosen time step ∆t.

• Denote the approximate solution at the grid point (tk, xj) as Uk
j .
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FDM for Parabolic PDEs: The Heat Equation

• Replace ut by a forward difference in time and uxx by a central
difference in space to obtain the explicit FDM

•

Uk+1
j − Uk

j

∆t
= κ

Uk
j+1 − 2Uk

j + Uk
j−1

(∆x)2

=⇒ Uk+1
j = Uk

j +
κ∆t

(∆x)2
(

Uk
j+1 − 2Uk

j + Uk
j−1

)

, j = 1, 2, . . .m

• Associated to this scheme is a Computational Stencil

q q q

q q q

q q q

6
�

���
@

@@I

j − 1 j j + 1

k − 1

k

k + 1
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FDM for Parabolic PDEs: The Heat Equation

• This is an explicit FDM for the heat equation: Solution at time level
k + 1 is determined by solution at previous time levels only.

• We note that
• From Boundary conditions: Uk

0 = α and Uk
m+1 = β for all values

of k.
• From Initial condition: U 0

j = f(xj) for all values of j.

• The local truncation error is O(∆t) + O((∆x)2).
Scheme is first order accurate in time and second order accurate in space

• How do we choose the values of ∆t and ∆x??
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FDM for Parabolic PDEs: The Heat Equation

0 0.2 0.4 0.6 0.8 1
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dx=0.01, dt=1e−05, r=0.1

Exact
Solution

Initial
function

• Initial condition has a discontinuous derivative at x = 0.5.
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FDM for Parabolic PDEs: The Heat Equation

• Initial condition has a discontinuous derivative at x = 0.5.

• However, we see a rapid smoothing effect of this initial discontinuity as
time evolves.

• In general high frequencies get rapidly damped as compared to low
frequencies. We say that the heat equation is stiff.

• In the above we assumed that the value of

r =
κ∆t

∆x
≤

1

2

Here ∆x = 0.01 and ∆t = 10−5

• What happens if this value is greater than 1/2?
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FDM for Parabolic PDEs: The Heat Equation
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282

dx=0.01, dt=0.0001, r=1

• We see unstable behavior of the numerical solution! The numerical
solution does not stay bounded.

• Thus, ∆t and ∆x cannot be chosen arbitrarily. They have to satisfy a
stability condition.
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Implicit FDM for Parabolic PDEs: The Heat Equation

• Replace ut by a forward difference in time and uxx by a central
difference in space to obtain the Implicit FDM

•

Uk+1
j − Uk

j

∆t
= κ

Uk+1
j+1 − 2Uk+1

j + Uk+1
j−1

(∆x)2

=⇒ Uk+1
j = Uk

j +
κ∆t

(∆x)2
(

Uk+1
j+1 − 2Uk+1

j + Uk+1
j−1

)

, j = 1, 2, . . .m

• Associated to this scheme is a Computational Stencil

q q q

q q q

q q q

6

j − 1 j j + 1

k − 1

k

k + 1
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FDM for Parabolic PDEs: The Heat Equation
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1

dx=0.01, dt=0.01, r=100

Initial
function

Exact
Solution

• We see stable behavior of the numerical solution! The numerical
solution remains bounded even when r > 1/2.

• Thus, ∆t and ∆x can be chosen to have the same order of magnitude.
• The implicit FDM is unconditionally stable
• However, the implicit scheme is still first order accurate in time and

second order accurate in space. Also, a system of equations must be
solved at each step.
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Crank-Nicolson for The Heat Equation

• Replace ut by a forward difference in time and uxx by a central difference in space to
obtain the Implicit FDM

•

Uk+1
j − Uk

j

∆t
=

κ

2

 

Uk
j+1 − 2Uk

j + Uk
j−1

(∆x)2

!

+
κ

2

 

Uk+1
j+1 − 2Uk+1

j + Uk+1
j−1

(∆x)2

!

=⇒ Uk+1
j = Uk

j +
κ∆t

2(∆x)2

“

Uk
j+1 − 2Uk

j + Uk
j−1 + Uk+1

j+1 − 2Uk+1
j + Uk+1

j−1

”

,

j = 1, 2, . . . m

• Associated to this scheme is a Computational Stencil

q q q

q q q

q q q

6

j − 1 j j + 1

k − 1

k

k + 1

• This method is unconditionally
stable,

• and second-order accurate in time
• However a system of equations

must be solved at each time step.
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First vs Second Order Accuracy
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order accurate
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Order accurate
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Method of Lines (MOL) Discretization

• Another way of solving time dependent PDEs numerically
is to discretize in space but not in time.

• This results in a large coupled system of ODEs which we
can then solve using numerical methods developed for
ODEs, such as Forward and Backward Euler method,
Trapedoizal methods, Runge-Kutta methods etc.

• The method of lines approach can be used to analyze the
stability of the numerical method for the PDE by analyzing
the eigenvalues of the matrix of the resulting system of
ODEs using the ideas of absolute stability for ODEs.
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Analysis of FDM

• Consitency implies that the local truncation error goes to zero as ∆x
and ∆t approach zero. This is usually proved by invoking Taylor’s
theorem.

• Stability implies that the numerical solution remains bounded at any
given time t. Stability is harder to prove than consistency. Stability can
be proven using either
• Eigenvalue analysis of the matrix representation of the FDM.
• Fourier analysis on the grid (von Neumann analysis)
• Computing the domain of dependence of the numerical method.

• Lax-Equivalence Theorem : A consistent approximation to a
well-posed problem is convergent if and only if it is stable
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Von Neumann Analysis for Time-dependent Problems
• Example: The analytical solutions of the heat equation ut − κuxx = 0

can be found in the form

u(t, x) =
∞
∑

−∞

eβmteiαmx

with βm + κα2
m = 0. Here eiαmx = cos(αmx) + i sin(αmx).

• To analyze the growth of different Fourier modes as they evolve under
the numerical scheme we consider each frequency separately, namely
let u(t, x) = eβmteiαmx

• In the discrete case we assume that Uk
j = Gkeiαmj∆x with

G = eβm∆t. Any growth in the solution will be due to the presence of
terms involving G.

• Thus requiring that this amplification factor G is bounded by one as
k → ∞ gives rise to a relation between ∆t and ∆x called the von
Neumann stability condition.
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Von Neumann Analysis for Time-dependent Problems
• Example: The analytical solutions of the heat equation ut − κuxx = 0

can be found in the form

u(t, x) =
∞
∑

−∞

eβmteiαmx

with βm + κα2
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FDM for Hyperbolic PDEs: The Advection Equation

• Consider the initial value problem for the Advection equation

ut + aκux = 0, 0 ≤ x ≤ 1, t ≥ 0

u(0, x) = f(x), Initial Condition

• The solution u(x, t) = f(x − at) is a wave that propagates to the right
if a > 0 and to the left if a < 0.

x

x

t

u (x,0 )

u (x,t ) C h a ra cte ris tic
x �a t � c

• Information propagates along characteristics
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FDM for the Advection Equation

• Replace ut by a forward difference in time and ux by a backward
difference in space to obtain the explicit FDM

•

Uk+1
j − Uk

j

∆t
+ a

Uk
j+1 − Uk

j

∆x
= 0

=⇒ Uk+1
j = Uk

j +
a∆t

∆x

(

Uk
j − Uk

j−1

)

, j = 1, 2, . . .m

• Associated to this scheme is a Computational Stencil

q q q

q q q

q q q

6
�

���

j − 1 j j + 1

k − 1

k

k + 1 • Scheme is explicit
• First order accurate is time

and space
• ∆t and ∆x are related

through the Courant number

ν =
a∆t

∆x
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Courant Friedrich Lewy (CFL) Condition

• The CFL Condition : For stability, at each mesh point, the Domain of
depencence of the PDE must lie within the domain of dependence of
the numerical scheme.

P

Q

P

(a) (b )

C h arac te ris tic

Q

∆ t
∆ t

a ∆ t

a ∆ t

t

x

∆ x ∆ xt

x

• CFL is a necessary condition for stability of explicit FDM applied to
Hyperbolic PDEs. It is not a sufficient condition.

• For the advection equation CFL condition for stability is |ν| ≤ 1. i.e.,

∆t ≤
∆x

|a|
.
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Elliptic PDEs: Laplace Equation

• Time-independent problems

• Consider the Boundary value problem for Laplace equation in two
spatial dimensions

uxx + uyy = 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

with boundary conditions prescibed as shown below

6

- x

u = 0

u = 1

u = 0 u = 0

y
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FDM for Elliptic PDEs: Laplace Equation

• Discretize the mesh using uniform mesh step in both the x and y
directions as below.

6
? -�

- x6
y

t t t t t t t t t t t

t t t t t t t t t t

t t t t t t t t t t

t t t t t t t t t t

t t t t t t t t t t

t t t t t t t t t t

t t t t t t t t t t

t t t t t t t t t t t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

t

0 = x0 x1 x2 . . . . . . xj−1 xj xj+1 . . . xm xm+1 = 1

0 = y0

y1

y2

...

...

ym−1

ym

ym+1 = 1

∆x

∆y
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Elliptic PDEs: Laplace Equation

• Replace both the second order derivatives uxx and uyy with centered
differences at each grid point (xj , yk) to obtain the difference scheme

Uj+1,k − 2Uj,k + Uj−1,k

(∆x)2
+

Uj,k+1 − 2Uj,k + Uj,k−1

(∆y)2
= 0

• If ∆x = ∆y this becomes

Uj+1,k + Uj−1,k + Uj,k+1 + Uj,k−1 − 4Uj,k = 0

• The Stencil for this FDM is called the Five-Point Stencil

q q q

q q q

q q q

j − 1 j j + 1

k − 1

k

k + 1
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Elliptic PDEs: Laplace Equation

• This FDM gives rise to a system of linear equations of the form

AU = b

• The right hand side vector b contains the boundary information.
• The vector U is the solution vector at the interior grid points.
• The matrix A is block tridiagonal if ordered in a natural way
• The structure of A depends on the ordering of the grid points.
• This system can be solved by iterative techniques or direct

methods such as Gaussian elimination.

• When m = 2, the system AU = b can be written as











−4 1 1 0

1 −4 0 1

1 0 −4 1

0 1 1 −4





















U1,1

U2,1

U1,2

U2,2











=











0

0

1

1










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Discretization of Elliptic PDEs
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Finite Element Method
Features

• Flexibility
• Complicated geometries
• High-order approximations
• Strong mathematical foundation
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Basic Idea

u(x) ≈ û(x) =
M

∑

j=1

ujφj(x)

• φj are basis functions
• uj: M unknowns; Need M equations
• Discretizing derivatives results in linear system
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1D Elliptic Example

−u′′ = f, 0 < x < 1

u(0) = u(1) = 0

• For example, elastic cord with fixed ends
• Solution must be twice differentiable
• This is unnecessarily strong if f is discontinuous
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Weak Formulation
Multiply both sides by an arbitrary test function v and
integrate

∫ 1

0

−u′′vdx =

∫ 1

0

fvdx

∫ 1

0

u′v′dx − u′v|10 =

∫ 1

0

fvdx.

∫ 1

0

u′v′dx =

∫ 1

0

fvdx.

Since v was arbitrary, this equation must hold for all v

such that the equation makes sense (v′ is square
integrable), and v(0) = v(1) = 0.
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Weak Formulation 2
Find u ∈ V such that

∫ 1

0

u′v′dx =

∫ 1

0

fvdx ∀v ∈ V

where V = H1
0([0, 1]).

• Fewer derivatives required for u

• If f continuous, same u as strong form
• Infinite possibilities for v

• Want to find u on a discrete mesh
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Finite-dimensional Subspace
• Let 0 = x0 < x1 < . . . < xM+1 = 1 be a partition

of the domain with hj = xj − xj−1 and
h = max hj. Use the partition to define a
finite-dimensional subspace Vh ⊂ V .

• For decreasing h, want that functions in Vh can
get arbitrarily close to functions in V .

• For example, let Vh be piecewise linear (i.e., on
each subinterval) functions such that v̂ ∈ Vh is
continuous on [0, 1] and v̂(0) = v̂(1) = 0.

• We may introduce basis functions φj(x) such that
φj(xi) = δij for i, j = 0, . . . ,M + 1.

• Nodes xi are sometimes denoted Ni
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Basis Functions
Finite methods for partial differential equations 19

...

x

1

...

Ni (x)

Ωi

x

x

1

x

1

u1

x1

ui

uN

xNxi

ui �1

ui �1

�u1 x

�ui x

�uN x

xi �1xi �1

∑
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Finite Element Method
Find û ∈ Vh such that

∫ 1

0

û′v̂′dx =

∫ 1

0

fv̂dx ∀v̂ ∈ Vh.

or
∫ 1

0

û′φ′
jdx =

∫ 1

0

fφjdx j = 1, . . . ,M.

Note:
• When û and v̂ in same subspace: Galerkin
• If support of φi is entire space: Spectral
• If Vh not a subspace of V : Non-conforming
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Linear System
• Can represent û =

∑M
i=1 ξiφi(x)

• Find ξi for i = 1, . . . ,M such that
∫ 1

0

M
∑

i=1

ξiφ
′
iφ

′
jdx =

∫ 1

0

fφjdx j = 1, . . . ,M.

• Thus if A = (aij) with aij =
∫ 1

0 φ′
iφ

′
jdx and

b = (bi) with bi =
∫ 1

0 fφidx, then

Aξ = b
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Stiffness Matrix
• The M × M matrix A is called the stiffness

matrix.
• For the piecewise linear basis functions we have

chosen it will be tridiagonal.
• For the special case when hj ≡ h we have

1

h





















2 −1 0 · · · · · · 0

−1 2 −1 . . . ...
0 −1 2 −1 . . . ...
... . . . . . . . . . . . . 0
... . . . −1 2 −1

0 · · · · · · 0 −1 2




















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Compare to FDM
• Note that if Trapezoid rule is used to approximate

the right hand side, then bi = hfi, and therefore
the equations determining û are

ξi+1 − 2ξi + ξi−1

h
= hfi

which are exactly the same as FDM.
• The advantage of the FEM formulation is the

generality it allows (e.g., uniform h was not
required).
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Multidimensional Problem
• Let Ω be the unit square (x, y) ∈ [0, 1] × [0, 1]

• Assume homogeneous Dirichlet boundary
conditions

• Then the 2D Possion problem is:
Find u ∈ V := H1

0(Ω) such that

−∆u = f in Ω,

u = 0 on ∂Ω.
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Variational Formulation
Find u ∈ V such that

a(u, v)Ω = (f, v)Ω, ∀v ∈ V,

where

a(u, v)Ω :=

∫

Ω

∇u · ∇v,

(f, v)Ω :=

∫

Ω

fv.

Note: used Green’s formula and v = 0 on ∂Ω.
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P1 Finite Element
We introduce a triangulation Th of Ω into triangles Ki,
and a finite dimensional subspace:

Vh := {v̂ ∈ H1
0(Ω) : v̂|Ki

∈ P1(Ki)}.

Find û ∈ Vh such that

a(û, v̂)Ω = (f, v̂)Ω, ∀v̂ ∈ Vh.
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Using Basis Functions
Representing û and v̂ in terms of nodal basis functions
{φi}

M
i=1 of Vh, i.e., φj(Ni) = δij for

i, j = 0, . . . ,M + 1, we get the following system of
algebraic equations:

M
∑

j=1

ξja(φi, φj) = (f, φi), i = 1, . . . ,M,

or in matrix form,
Aξ = b,

where ξj = û(Nj), Aij = a(φi, φj)Ω is SPD, and
bi = (f, φi)Ω.
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Multidimensional Problem
• Let Ω be the unit cube {x, y, z} ∈ [0, 1]

• Assume homogeneous Dirichlet boundary
conditions

• Then the 3D Possion problem is:
Find u ∈ V := H1

0(Ω) such that

−∆u = f in Ω,

u = 0 on ∂Ω.

Multiscale Summer School – p. 54



Variational Formulation
Find u ∈ V such that

a(u, v)Ω = (f, v)Ω, ∀v ∈ V,

where

a(u, v)Ω :=

∫

Ω

∇u · ∇v,

(f, v)Ω :=

∫

Ω

fv.

Note: used Green’s formula and v = 0 on ∂Ω.
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Q1 Finite Element
We introduce a triangulation Th of Ω into 3-D
rectangles Ki, and a finite dimensional subspace:

Vh := {v̂ ∈ H1
0(Ω) : v̂|Ki

∈ Q1(Ki)}.

����������
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Find û ∈ Vh such that

a(û, v̂)Ω = (f, v̂)Ω, ∀v̂ ∈ Vh.
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Using Basis Functions
Representing û and v̂ in terms of nodal basis functions
{φi}

M
i=1 of Vh, i.e., φj(Ni) = δij for

i, j = 0, . . . ,M + 1, we get the following system of
algebraic equations:

M
∑

j=1

ξja(φi, φj) = (f, φi), i = 1, . . . ,M,

or in matrix form,
Aξ = b,

where ξj = û(Nj), Aij = a(φi, φj)Ω is SPD, and
bi = (f, φi)Ω.
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Neumann Problem
• Let Ω be the unit square (x, y) ∈ [0, 1] × [0, 1]

• Assume Neumann boundary conditions
• Then the 2D Possion problem is:

Find u ∈ V := H1(Ω) such that

−∆u = f in Ω,

∂u

∂n
= g on ∂Ω.
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Variational Formulation
Find u ∈ V such that

a(u, v)Ω = (f, v)Ω + 〈g, v〉∂Ω, ∀v ∈ V,

where

a(u, v)Ω :=

∫

Ω

∇u · ∇v,

(f, v)Ω :=

∫

Ω

fv,

〈g, v〉∂Ω :=

∫

∂Ω

gv.

Note: used Green’s formula and ∂u
∂n = g on ∂Ω.
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P1 Finite Element
We introduce a triangulation Th of Ω into triangles Ki,
and a finite dimensional subspace:

Vh := {v̂ ∈ H1(Ω) : v̂|Ki
∈ P1(Ki)}.

Find û ∈ Vh such that

a(û, v̂)Ω = (f, v̂)Ω + 〈g, v̂〉∂Ω, ∀v̂ ∈ Vh.
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Using Basis Functions
Representing û and v̂ in terms of nodal basis functions
{φi}

M+1
i=0 of Vh, we get the following system of

algebraic equations:

M+1
∑

j=0

ξja(φi, φj) = (f, φi)+〈g, φi〉∂Ω, i = 0, . . . ,M+1,

or in matrix form,
Aξ = b,

where ξj = û(Nj), Aij = a(φi, φj)Ω is SPD, and
bi = (f, φi)Ω + 〈g, φi〉∂Ω.
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Mixed Boundary
Let Ω be the unit cube, Γ0 the face at z = 0, and
Γ1 = ∂Ω \ Γ0. Then we want to approximate u in Ω.

Γ0

Γ1

Ω
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Mixed Robin Boundary
Find u ∈ V := H1(Ω) such that

−∆u = f in Ω,

α0u + β0
∂u

∂n
= 0 on Γ0,

α1u + β1
∂u

∂n
= 0 on Γ1.

Note: assume βi 6= 0.
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Variational Formulation
Find u ∈ V such that

a(u, v)Ω −

〈

∂u

∂n
, v

〉

Γ0

−

〈

∂u

∂n
, v

〉

Γ1

= (f, v)Ω,

or

a(u, v)Ω + α0β
−1
0 〈u, v〉Γ0

+ α1β
−1
1 〈u, v〉Γ1

= (f, v)Ω,

where a(u, v)Ω and (f, v)Ω are the same as above and

〈u, v〉Γj
:=

∫

Γj

uv, j = 0, 1.
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Finite Element Method
We introduce the triangulation Th as before, and the
finite dimensional subspace

Vh := {û ∈ H1(Ω) : û|Ki
∈ Q1(Ki)}

to get the finite element problem:
Find û ∈ Vh such that

a(û, v̂)Ω + α0β
−1
0 〈û, v̂〉Γ0

+ α1β
−1
1 〈û, v̂〉Γ1

= (f, v̂)Ω, ∀v̂ ∈ Vh.
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Using Basis Functions
Representing û and v̂ in terms of nodal basis functions
{φi}

M
i=1 of Vh we get the following matrix equation:

(A + G)ξ = b,

where ξ, A, and b are similar to those above and

G0
ij := 〈φi, φj〉Γ0

,

G1
ij := 〈φi, φj〉Γ1

,

G :=
α0

β0
G0 +

α1

β1
G1.
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Parabolic and Elliptic
• Build off of elliptic FEM
• If boundary not moving, space-time rectangular

in t dimension
• Popular to use FEM for spatial discretization and

FDM for time
• Performing FEM first results in semi-discrete

formulation
• This is equivalent to a coupled system of ODEs
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Scalar Wave Problem
Find u ∈ H2([0, T ]; L2(Ω)) ∩ L2([0, T ]; H1

0 (Ω)) such
that

1

c2
utt − ∆u = f in Ω,

u = 0 in ∂Ω × (0, T ),

u(·, 0) = u0(·) in Ω,

ut(·, 0) = u1(·) in Ω.
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Variational Formulation
Find u(·, t) : [0, T ] → V := H1

0(Ω) such that

1

c2
(utt, v)Ω + a(u, v)Ω = (f, v)Ω, ∀v ∈ V,

(u(·, 0), v)Ω = (u0(·), v)Ω, ∀v ∈ V,

(ut(·, 0), v)Ω = (u1(·), v)Ω, ∀v ∈ V.
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Semi-discrete Formulation
Find û(·, t) : [0, T ] → Vh such that

1

c2
(üh, v̂)Ω + a(û, v̂)Ω = (f, v̂)Ω, ∀v̂ ∈ Vh,

(û(·, 0), v̂)Ω = (u0(·), v̂)Ω, ∀v̂ ∈ Vh,

(u̇h(·, 0), v̂)Ω = (u1(·), v̂)Ω, ∀v̂ ∈ Vh.
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Using Basis Functions
In matrix form,

1

c2
Lξ̈(t) + Aξ(t) = b, ∀t ∈ (0, T ),

Lξ(0) = χ0,

Lξ̇(0) = χ1,

where ξ, A, and b are as above, and

χ0
i := (u0, φi)Ω,

χ1
i := (u1, φi)Ω,

Lij := (φi, φj)Ω.
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Fully Discrete Formulation
In order to discretize in time, we introduce a
(uniform) partition of the interval [0,T]:
0 = t0 < t1 < · · · < tNT

= T , and
k := tn − tn−1, n = 1, . . . , NT .

1

c2
L

ξn+1 − 2ξn + ξn−1

k2
+ Aξn = bn, n = 1, . . . , NT ,

Lξ0 = χ0,

Lξ1 = χ0 + kχ1,

where ξn
i ≈ ξi(tn) and bn

i := bi(tn).
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Mass Lumping
• Note that the fully discrete formulation is still

implicit, thus a linear solve at each time step must
be performed.

• Since Lij := (φi, φj)Ω, it is possible to make L

diagonal by using a quadrature rule (Trapezoid)
for the integration.

• The resulting explicit method is exactly the FDM.
• When to lump is an important question;

numerical dispersion analysis can show, for
example, in 1D consistent mass matrix requires a
smaller time step than lumped, and a linear solve!

• Mass lumping can reduce accuracy, especially in
higher dimensions.
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Other Considerations
• Integration performed in “local” coordinates, then global

matrix assembled.
• K may be mapped to reference domain (e.g., [−1, 1]) for

easy integration (especially quadrature rules).
• Technically speaking a finite element is a triple: geometric

object, finite-dimensional linear function space, and a set of
degrees of freedom.

• Many types of finite elements exist, including some with
quadratic or cubic basis functions, first or second derivatives
as degrees of freedom, or degrees of freedom in locations
other than vertices (e.g., centroid).

• More general than FDM, and more easily applied to slanted
or curved boundaries, especially involving normal derivative
boundary conditions.
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Conservation Laws
• Many PDEs are derived from physical models

called conservation laws.
• The general principle is that the rate of change of

u(x, t) within a volume V is equal to the flux past
the boundary

∂

∂t

∫

V

u(x, t) +

∫

∂V

f(u) · n = 0

where f is flux function.
• Nonlinear conservation laws can result in

discontinuities in finite time even with smooth
initial data.
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Finite Volume Method
• Rather than pointwise approximations on a grid, FVM

approximates the average integral value on a reference
volume.

• Suppose region Vi = [xi−(1/2), xi+(1/2)] then
∫ xi+(1/2)

xi−(1/2)

utdx + f(ui+(1/2)) − f(ui−(1/2)) = 0

where we have applied Gauss’s theorem and integrated
analytically the resulting term

∫ xi+(1/2)

xi−(1/2)
fx(u)dx.

• We can apply a quadrature rule, for example Midpoint, to
the remaining integral to get a semi-discrete form
(

xi+(1/2) − xi−(1/2)

)

ut(xi) + f(ui+(1/2)) − f(ui−(1/2)) = 0.
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FVM Example

Consider the elliptic equation uxx = f(x) on a control volume
Vi = [xi−(1/2), xi+(1/2)] then

∫ xi+(1/2)

xi−(1/2)

uxxdx =

∫ xi+(1/2)

xi−(1/2)

fdx.

Evaluating the left hand side analytically and the right via
Midpoint gives

ux(xi+(1/2)) − ux(xi−(1/2)) =
(

xi+(1/2) − xi−(1/2)

)

fi

Finally, using centered differences on the remaining derivatives
yields

ui+1 − 2ui + ui−1

h
= hfi

for h = xi+(1/2) − xi−(1/2).
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FVM Summary
• Applies to integral form of conservation law.
• Handles discontinuities in solutions.
• Natural choice for heterogeneous material as each

grid cell can be assigned different material
parameters.

• There exist theory for convergence, accuracy and
stability.
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Systems of Linear Equations
• For implicit methods must choose a linear solver.
• Direct (LU factorization)

• More accurate
• May be cheaper for many time steps
• Banded (otherwise fill-in)

• Iterative
• If accuracy less important than speed
• Matrix-free
• Sparse
• SPD
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Iterative Methods
• Successive Over Relaxation (SOR)

• Simple to code
• ω = 1 is Gauss-Seidel

• Conjugate Gradient
• SPD
• Eigenvalues clustered together (Precondition)

• Generalized Minimum Residual (GMRES)
• Non-SPD, e.g. convection-diffusion with

upwinding
• Krylov method: builds orthonormal basis

which may get big (Restart)
• Preconditioning helps (Incomplete Cholesky)
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