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Motivating Application

Hard outer skin

Water settling in crack

External
tank skin

Ice or water may
become trapped
between foam and tank

Cracked foam
Cracks or other defects soak up water from rain or high humidity, such as
was prevalent during Columbia’s stay on the pad. These cracks put the
water in direct contact with the supercold tank, causing the water to freeze.
This process can widen the cracks, causing more water to seep in, forming
ice chunks.

The particular motivation for this research is the detactbdefects in the
Insulating foam on the space shuttle fuel tanks in order fp @kminate the
separation of foam during shuttle ascent.
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Outline

» 1D Gap Detection Model
 Numerical Methods for Forward Problem

* Inverse Problem
Ordinary Least Squares
Alternate Approach
Computational Results
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Picometrix T-Ray Setup

Step-block can be used to interrogate varying thicknessiEam. It can be turned upside down
to sample varying gap sizes.
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THz through foam

Waveforms traversing various thicknesses of foam

THz signal recorded after passing through
foam of varying thickness, in a pitch-echo ex-
periment.
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FFT of THz Signal

FFT of waveforms through various thicknesses of foam
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Gap Detection Problem




Model

ooer E + polo P + pooloE — B = —puy J,

[E]z=1 =0
E(0,z) = E(0,2) =0
P(0,2) =0

where

In Q2 U g
In €2
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Numerical Discretization
« Second order FEM in space

piecewise linear splines

« Second order FD In time
Crank-Nicholson P)

Central differencesk)
€n = Pn — €En4l — Pn+1 — °

« F equation implicit, LU factorization used
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Finite Element Method In Space

The resulting system of differential equations in
semi-discrete form can be written

Mié + Maé + Mse + \°p = nyJ (1)
D+ Ap = egZ M e, (2)
whereny=+/ /€0, €4=€s — €0, A=1/cT, € andp are

vectors representing the approximate values @nd
P respectively at the nodes.

p=M"*"p whereM* is the mass matrix integrated only
over{).
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Finite Difference in Time (p)

Our finite difference approximation for (2) is

- - PVAN _
Puit =Pn+ 17 )\Ate(GdM%mH —pn)  (3)

Where[en]j:E(tn, Z]‘), [ﬁn]]:MQP(tn, Z]‘), Z]':jh.

The valuee,,  y=0¢e,, + (1 — 0)e, .1 IS a weighted
average ot,, ande,,; for relaxation to help with
stability of the method.

Note: we take) = 1/2.
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Finite Difference in Time (e)

Applying second order central differencing with
averaging to (1) gives

Alen—|—2 — A2€n—|—1 =+ A3€n - At2770<]n—i—1 — )\2At2pn—(|—15
4

As p,.1 depends explicitly or,, ande,,..;, we could
substitute (3) here and have one implicit equation for
the update oé.

Note: we use LU factorization a%; does not change
over time.
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Sample Problem

Signal at t=0.1182 ns Signal at t=0.141841 ns
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Computed solutions at different times of a windowed
electromagnetic pulse d&=100G H z incident on a
Debye medium with a crack=.0002m wide located
d=.02m Into the material.

Oregon State University

Department of Mathematics — p. 13



Sample Problem (Cont.

Signal received at z=0

N=2048
Nt=6122
Ns=6122
depth=0.02
delta=0.0002
f=le+11Hz
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Reflected signal received atO0.
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Sample Problem (Cont.)

Signal received at z=0

N=2048
Nt=6122
Ns=6122

epth=0.
delta=0.0002
f=le+11Hz

Close up look at reflected signal receivedab
Shows “important” parts of the signal.
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Gap Detection Inverse Problem

« Assume we have datE@-, recorded at=0

 Givend andd we can simulate the electric field
(Need a fast numerical method)

« Estimated ando by solving an inverse problem:

Find ¢=(d, 0) € Q.4 such that the following
objective function is minimized:

S
1 .
Jl9) = 55 > |E(t:,0:q) — B
=

l.e., find the value of; that results in®/(¢) which is a “best
match” to the datd& (in a least squares sense).
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Ji(q) Surface Plot

L7

7
LA ZH
LFFZ ....'.......'l

Surface plot of the Ordinary Least Squares objective
function demonstrating peaks i, and exhibiting
many local minima.
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Out of phase

Comparison of sl for different deltas (using 215 sample points)
I I I |

— delta=0.2
-— - delta=0.181

al
o

I
(o)
o

electric field (volts/meter)




Improved Objective Function

Consider the following formulation of the Inverse
Problem:

Find¢=(d, 9) € Q.4 such that the following objective
function Is minimized:

S
1 L2
Ja(q) = ﬁz "E(tuo;Q)’ — |Eil| -
1=1
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J>(q) Surface Plot

Close up surface plot of our Modified Least Squares
objective function demonstrating lack of peaks/n
but still exhibiting many local minima.
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Erroneous Local Minima

Signal received at z=0

— (d",8)=(.2,.0002) ,
_ _(do)=(d-2aN4d+2a sqrt(er) Al4)
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Data from(d*, §*) and a simulation from the “check pointd* — 22, 6* + 2a./e-%). The
simulated signal’s largest peak matches with that of tha.dat
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Check Point Method

The diagonal “trench” occurs approximately along the
line
1
d=———=(0—0")+d".
e =)

Also, the minima occur ever{,}'m along this line.
Therefore, if our optimization routine detects a local

minima, we tes% on either side of the local minima

to see If there Is a smaller minima nearby. If so, we
restart our optimizer at the new smallest point.
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L evenberg-Marquardt Method
We re-write the objective function as

_ 1 T
J(q) = 5gR'R

whereR,;=(|E(t;,0; q)| — |E;|) is the residual. To
update our approximation tpwe make the
Gauss-Newton update step=q. + s. where

se=— (R'(q.)"R'(qe) + veI) " R'(q.)TR(q).

IS the stepy. IS the current approximation, and IS
the resulting approximation. The valugis called the
Levenberg-Marquardt parameter.

Oregon State University Department of Mathematics — p. 23



Confidence Intervals ford ¢, = o

6 | d* = .02 (N = 2048)

0002 | (2.00005 £ 9.30284 x 10~7) x 102
0004 | (2.00001 £ 6.50411 x 10~7) x 1072
.0008 | (2.00001 £ 4.91232 x 1077) x 102

5 | d* = .04 (N = 4096)

0002 | (4.00013 £ 1.62162 x 10~6) x 102
0004 | (4.00001 = 1.19064 x 10~6) x 102
0008 | (4.00002 % 9.05240 x 10~7) x 102

Confidence intervals for the OLS estimatedoivhen the data Is
generated with no noise (i.e4,=0.0).
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Confidence Intervals ford ¢, = 1

5 | d* = .02 (N = 2048)

0002 | (2.00000 = 4.72903 x 10~°) x 102
0004 | (2.00003 + 3.39327 x 10~°) x 102
0008 | (2.00003 = 2.79911 x 10~°) x 102

5 | d* = .04 (N = 4096)

0002 | (4.00014 = 5.48283 x 10~°) x 102
0004 | (4.00002 + 3.87474 x 107°) x 102
0008 | (4.00003 = 3.19526 x 10~?°) x 102

Confidence intervals for the OLS estimatedoivhen the data Is
generated with noise leve)=0.1.
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Confidence Intervals foro o, = o)

5 | d* = .02 (N = 2048)

0002 | (1.99272 + 0.000182978) x 10~
0004 | (4.00035 % 0.000201885) x 10~
0008 | (7.99833 + 0.000136586) x 10~

5 | d* = .04 (N = 4096)

0002 | (1.98142 + 0.000317616) x 10~
0004 | (4.00737 £ 0.000369841) x 10~
0008 | (8.00332 % 0.000251291) x 10~

Confidence intervals for the OLS estimatedohen the data Is
generated with no noise (i.e4,=0.0).
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Confidence Intervals foro ¢, = 1

5 | d* = .02 (N = 2048)

0002 | (2.00017 % 0.00932701) x 10~
0004 | (4.00070 £ 0.0105331) x 10~*
0008 | (7.99698 + 0.00778563) x 10~

5 | d* = .04 (N = 4096)

0002 | (1.97674 +0.0107203) x 104
0004 | (4.01229 + 0.0120445) x 10~*
0008 | (8.00361 % 0.00886925) x 104

Confidence intervals for the OLS estimatedohen the data is
generated with noise leve)=0.1.
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Comments on 1D Gap Problem

« Our modified Least Squares objective function
“fixes” peaks in7

 Can test on both sides of detected minima to
ensure global minimization

 \We are able to detect.amm wide crack behind
a20cm deep slab

» Even adding random noise (equivalentys
relative noise) does not significantly hinder our
Inverse problem solution method, and only
slightly broadens the confidence intervals in a
sensitivity analysis
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SOFI| under 20X magnification

| & 1'_- ! . 5

Material heterogeniety may have significant effects on titpwt of an
Interrogating signal, especially pulsed UWB signals. Gaersdistributed
parameters, homogenization, or distributions.
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Relative/Constant Variance
Noise

Relative Noise vs Constant Variance

1
—— Relative Noise I
—©— Constant Variance
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The difference between data with relative noise added atadwidsh constant variance noise
added is clearly evident whefi is close to zero or very large.
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