- Introduction
- Background on Predictive Science (Smith Chapter 1: Introduction)
- Verification/Validation
- Errors/Uncertainties
- Mathematical Modeling
- Prototypical Models (Smith Section 3.1)
- Abstract Modeling Framework (Smith Section 3.3)
- Probability Basic Concepts (Smith Chapter 4; Xiu Chapter 2)
- Probability Distributions
- Stochastic Processes
- Random vs Stochastic Differential Equations (Smith 4.7)
- Representation of Random Inputs
- Karhunen-Loeve Expansion (Smith Chapter 5; Xiu Chapter 4)
- PCA
- SVD
- Uncertainty Propagation
- Sampling, Perturbation, Spectral
- Generalized Polynomial Chaos (Xiu Chapter 3)
- Stochastic Galerkin
- Stochastic Finite Element Method
- Error Analysis
- Stochastic Collocation
- Projection vs Interpolation
- Sparse Grid Collocation
- Error Analysis
- Stochastic Differential Equations (Higham)
- Brownian Motion
- Stochastic Integrals
- Euler-Maruyama Method
- Strong vs Weak Convergence
- Milstein Method
- Theta Methods
|