MTH 453/553 - Homework 4 Solutions

1. Consider the initial value problem

$$
\begin{aligned}
u_{t}-u_{x} & =0 \\
u(x, 0) & =\sin (\omega x),
\end{aligned}
$$

where ω is a parameter. The exact solution to this problem is

$$
u(x, t)=\sin (\omega(t+x))
$$

Let us solve this problem on the interval $[-\pi, \pi]$ with periodic boundary conditions, i.e.,

$$
u(t,-\pi)=u(t, \pi), t>0
$$

We perform a discretization of the spatial interval $[-\pi, \pi]$ with spatial step size h and we use a temporal step size k on the time interval $[0,1]$. Let $m+1=\frac{2 \pi}{h}$. We want to calculate approximate solution values u_{j}^{n} for $j=1, \ldots, m+1$. The periodic boundary conditions give

$$
u_{0}^{n}=u_{m+1}^{n}, \quad \forall n
$$

It is helpful to imagine the spatial mesh points sitting on a ring, rather than on a straight line, with x_{m+1} being identified with x_{0}. Thus, when $j=m$, then $u_{j+1}=u_{0}$ and for $j=$ $0, u_{j-1}=u_{m}$. (This gets further complicated in MATLAB as zero index is not allowed, so we add one to each index.)
(a) Download the code leapfrog.m from the course webpage. This code implements the Leapfrog (midpoint) method (CC), given in (10.13) in the text, to obtain a numerical solution to the given problem.
(b) Modify this code to create a new file that implements the forward in time-backward in space (FB) finite difference scheme given in (10.23) to solve the given problem.
(c) Create a new file that implements the forward in time-centered in space (FC) finite difference scheme given in (10.5) to solve the given problem.
(d) Calculate the maximum errors at $t=1$ for all three schemes using the values of ω, m and $\nu(=k / h)$ given in the table below and fill in the missing entries in the table

ω	$m+1$	ν	Error in FB	Error in FC	Error in CC
2	20	0.5	0.2473	0.3304	0.0788
2	200	0.5	$?$	$?$	$?$
2	2000	0.5	$?$	$?$	$?$

What order of accuracy does each method seem to exhibit?
Answer: Download the Codes
i. downwind.m
ii. forward_center.m
iii. leapfrog.m
from my webpage. Run these codes with the script hw4prob1d.m in MATLAB to see the table of errors. You should see 1st order, unstable, 2nd order, respectively.
(e) Fix $m+1=20$. What is the effect on the error of each method when ω is increased or decreased? Answer: Run the above codes with the script hw4prob1e.m in MATLAB to see the table of errors. You should see that for $\omega<1$ periodic boundary conditions do not make sense, and for $\omega>1$ error generally gets worse as the frequency increases. Downwind scheme with $\omega=8$ is particularly interesting.
(f) Fix $m+1=20$. What is the effect on the error of each method when ν is increased or decreased? In particular, try $\nu=1$ and $\nu>1$. Answer: Run the above codes with the script hw4prob1f.m in MATLAB to see the table of errors. You should see that for $\nu=1$ downwind and leapfrog are exact. The FC method seems to be best for very small ν. Downwind gets progressively worse for $\nu>1$. However, something interesting happens to downwind and FC for $\nu>\pi$. Also see leapfrog for $\pi / 2<\nu<\pi$.
2. Download the code leapfrogpulse.m from the course webpage. This code implements the Leapfrog method with a Gaussian pulse for the initial condition. Snapshots of the solution at various times are shown, and the norm of the solution is displayed to the prompt.
(a) Run the code leapfrogpulse.m with $m+1=75$ and try ν values of $1,0.8$, and 1.01 . Describe the resulting qualitative behavior of solutions and explain why it occurs. Answer: Hopefully you observed an exact solution, a dispersive solution and an unstable solution, respectively.
(b) Change the boundary condition from periodic to $u(\pi, t)=0$. Impose artificial absorbing boundary conditions at the outflow boundary $x=-\pi$:

$$
U_{1}^{n+1}=U_{1}^{n}+\nu\left(U_{2}^{n}-U_{1}^{n}\right)
$$

Run the code with $m+1=75$ and try ν values of $1,0.8$, and 1.01. (Try also the case $\nu=0.25$, and look closely for a "reflection" that travels backwards!) Discuss the accuracy of the absorbing boundary condition in terms of the remaining "energy". Answer: Download the code leapfrogpulsekey.m.
3. Consider the advection equation

$$
u_{t}+a u_{x}=0
$$

and recall that the forward in time-centered in space (FC) scheme is consistent but unconditionally unstable. The Lax-Friedrichs scheme is a variation of the FC scheme and is given as

$$
U_{j}^{n+1}=\frac{1}{2}\left(U_{j-1}^{n}+U_{j+1}^{n}\right)-\frac{\nu}{2}\left(U_{j+1}^{n}-U_{j-1}^{n}\right),
$$

where $\nu=\frac{a k}{h}$ is the Courant number.
(a) (553:) Show that the Lax-Friedrichs scheme is consistent and find the order of accuracy. Answer: Compute the local truncation error. Note: To do this, you need to write the difference scheme in a form that directly models the derivatives and then substitute the exact solution in it. Rewrite the difference scheme as

$$
\frac{U_{j}^{n+1}-\frac{1}{2}\left(U_{j-1}^{n}+U_{j+1}^{n}\right)}{k}+a \frac{\left(U_{j+1}^{n}-U_{j-1}^{n}\right)}{2 h}=0
$$

Substituting the exact solution in the above, the local truncation error at $\left(x_{j}, t_{n}\right)$ is given as

$$
\begin{equation*}
\tau_{j}^{n}=\frac{\left\{u\left(x_{j}, t_{n+1}\right)-\frac{\left(u\left(x_{j-1}, t_{n}\right)+u\left(x_{j+1}, t_{n}\right)\right)}{2}\right\}}{k}+a \frac{\left\{u\left(x_{j+1}, t_{n}\right)-u\left(x_{j-1}, t_{n}\right)\right\}}{2 h} \tag{1}
\end{equation*}
$$

Using Taylor series expansions around $\left(x_{j}, t_{n}\right)$ we have

$$
\begin{align*}
& u\left(x_{j}, t_{n+1}\right)=u\left(x_{j}, t_{n}\right)+k u_{t}\left(x_{j}, t_{n}\right)+\frac{k^{2}}{2} u_{t t}\left(x_{j}, t_{n}\right)+O\left(k^{3}\right) \tag{2}\\
& u\left(x_{j+1}, t_{n}\right)=u\left(x_{j}, t_{n}\right)+h u_{x}\left(x_{j}, t_{n}\right)+\frac{h^{2}}{2} u_{x x}\left(x_{j}, t_{n}\right)+O\left(h^{3}\right) \tag{3}\\
& u\left(x_{j-1}, t_{n}\right)=u\left(x_{j}, t_{n}\right)-h u_{x}\left(x_{j}, t_{n}\right)+\frac{h^{2}}{2} u_{x x}\left(x_{j}, t_{n}\right)+O\left(h^{3}\right) \tag{4}
\end{align*}
$$

Substituing (2), (3) and (4) in (1) we get

$$
\begin{aligned}
\tau_{j}^{n} & =u_{t}\left(x_{j}, t_{n}\right)+\frac{k}{2} u_{t t}\left(x_{j}, t_{n}\right)+O\left(k^{2}\right) \\
& -\frac{h^{2}}{2 k} u_{x x}\left(x_{j}, t_{n}\right)+\frac{O\left(h^{3}\right)}{k} \\
& +a u_{x}\left(x_{j}, t_{n}\right)+O\left(h^{2}\right)
\end{aligned}
$$

Since, u is the exact solution, we have $u_{t}+a u_{x}=0$. Also letting the Courant number $\nu=a k / h$ be constant, then $h / k=a / \nu$ and we have

$$
\begin{equation*}
\tau_{j}^{n}=\frac{k}{2} u_{t t}\left(x_{j}, t_{n}\right)-\frac{a h}{2 \nu} u_{x x}\left(x_{j}, t_{n}\right)+O\left(k^{2}\right)+O\left(h^{2}\right)=O(k)+O(h) \tag{5}
\end{equation*}
$$

Thus, the scheme is consistent and it is first order accurate in both space and time.
(b) Use von Neumann analysis to show that the Lax-Friedrichs scheme is stable, provided that the CFL condition, $|\nu| \leq 1$, holds. Answer: Applying the Fourier transform to the difference scheme we have

$$
\begin{equation*}
\hat{U}\left(\xi, t_{n}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-i x \xi} U\left(x, t_{n}\right) d x \tag{6}
\end{equation*}
$$

we have the equation

$$
\hat{U}\left(\xi, t_{n+1}\right)=\left\{\frac{1}{2}\left(\mathrm{e}^{-i \xi h}+\mathrm{e}^{i \xi h}\right)-\frac{\nu}{2}\left(\mathrm{e}^{i \xi h}-\mathrm{e}^{-i \xi h}\right)\right\} \hat{U}\left(\xi, t_{n}\right)
$$

Thus, the amplification factor is

$$
\begin{aligned}
g(h \xi) & =\frac{1}{2}\left(\mathrm{e}^{-i \xi h}+\mathrm{e}^{i \xi h}\right)-\frac{\nu}{2}\left(\mathrm{e}^{i \xi h}-\mathrm{e}^{-i \xi h}\right) \\
& =(\cos (h \xi)-\mathrm{i} \nu \sin (h \xi))
\end{aligned}
$$

Hence

$$
|g(h \xi)|=\sqrt{\cos ^{2}(h \xi)+\nu^{2} \sin ^{2}(h \xi)}
$$

Thus, if $|\nu| \leq 1$, then we have $|g(h \xi)| \leq 1$, for any ξ and hence the scheme is stable.

