
MTH 453/553 – Homework 3 Solutions

1. Download the Codes

(a) ExplicitHE.m

(b) ImplicitHE.m

(c) CrankHE.m

from my webpage. Run these codes with the required values of h = dx and k = dt in

MATLAB.

2. Consider the following nonlinear heat equation

ut = (α(u)ux)x, for x ∈ (0, 1), t > 0

u(0, t) = u(1, t) = 0

u(x, 0) = f(x),

where α(u) is a given strictly positive and smooth function.

(a) Using Taylor series expansions around (x, t) we have

u(x, t+ k)− u(x, t)

k
= ut(x, t) +

k

2
utt(x, t) +O(k2)

Thus,
u(x, t+ k)− u(x, t)

k
= ut(x, t) +O(k) (1)

Let v = α(u)ux. Using Taylor series expansions around (x, t) we have

v(x+ h/2, t)− v(x− h/2, t)
h

= vx(x, t) +
h2

48
vxxx(x, t) +O(h4)

Thus,
v(x+ h/2, t)− v(x− h/2, t)

h
= vx(x, t) +O(h2) (2)

(b) Using Taylor Series expansions around the point c∗ = (x+ h/2, t) we have

u(x+ h, t) = u(c∗) +
h

2
ux(c∗) +

h2

8
uxx(c∗) +O(h3) (3)

u(x, t) = u(c∗)− h

2
ux(c∗) +

h2

8
uxx(c∗) +O(h3) (4)
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Subtracting the two equations above, we get

u(x+ h, t)− u(x, t)

h
= ux(c∗) +O(h2) (5)

Let u∗ = u(c∗). Then, we have

α(u(x+ h, t)) = α(u∗) +
h

2
αx(u∗) +

h2

8
αxx(u∗) +O(h3) (6)

α(u(x, t)) = α(u∗)− h

2
αx(u∗) +

h2

8
αxx(u∗) +O(h3) (7)

Adding the two equations above and dividing by half, gives

α(u(x+ h, t)) + α(u(x, t))

2
= α(u∗) +

h2

4
αxx(u∗) +O(h4) (8)

Thus,
α(u(x+ h, t)) + α(u(x, t))

2
= α(u∗) +O(h2) (9)

Using the approximations in (5) and (9) above, we get

v(c∗) = α(u∗)u(c∗)

=

(
α(u(x+ h, t)) + α(u(x, t))

2
+O(h2)

)(
u(x+ h, t)− u(x, t)

h
+O(h2)

)
Thus,

v(c∗) =

(
α(u(x+ h, t)) + α(u(x, t))

2
)

)(
u(x+ h, t)− u(x, t)

h

)
+O(h2) (10)

(c) Using approximations (1), (2) and (10) above we can derive the scheme

Un+1
j − Un

j

k
=
αn
j+1/2(U

n
j+1 − Un

j )− αn
j−1/2(U

n
j − Un

j−1)

h2
, (11)

where αn
j+1/2 = (α(Un

j+1) + α(Un
j ))/2.

3. Consider the nonlinear heat equation

ut = (uux)x, for x ∈ (0, 1), 0 < t ≤ 1

u(0, t) = t, u(1, t) = 1 + t

u(x, 0) = x

(b) Show, by induction, that the explicit scheme in Problem 2, part c, gives the exact solution

at each grid point, i.e., show that Un
j = xj + tn for any grid sizes.
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Solution: When n = 0 we have U0
j = xj, so that the scheme has the exact solution at each

grid point initially.

Assume that the explicit solution gives the exact solution at each grid point at time tn = nk,

i.e., Un
j = xj + tn. From the scheme, we have

Un+1
j = Un

j + k
αn
j+1/2(U

n
j+1 − Un

j )− αn
j−1/2(U

n
j − Un

j−1)

h2
, (12)

We note that,

Un
j+1 − Un

j = (xj + h+ tn)− (xj + tn) = h (13)

Un
j − Un

j−1 = (xj + tn)− (xj − h+ tn) = h (14)

αn
j+1/2 =

α(Un
j+1) + α(Un

j )

2
=
Un
j+1 + Un

j

2
=

(xj + h+ tn) + (xj + tn)

2
= (xj + tn) + h/2

(15)

Similarly,

αn
j−1/2 =

α(Un
j ) + α(Un

j−1)

2
=
Un
j + Un

j−1

2
=

(xj + tn) + (xj − h+ tn)

2
= (xj + tn)− h/2

(16)

Substituting (13)-(16) in (12) we get

Un+1
j = xj + tn + k

h(xj + tn + h/2)− h(xj + tn − h/2)

h2
(17)

= xj + tn + k = xj + tn+1 (18)

Since, j is a generic index, using induction we have shown that the explicit scheme gives the

exact solution at each grid point.

(d) From the numerical results obtained in part c, it is clear that some kind of stability

condition is needed. Try to come up with a stability condition for this problem. Run some

numerical experiments with mesh parameters satisfying this condition. Are the numerical

solutions well-behaved if the conditions on the mesh parameters are satisfied?

Solution: We linearize the equation and freeze the coefficients by considering the problem

locally. This leads to a linear problem with constant coefficients. For this linear problem, von

Neumann analysis can be applied, and a stability condition can be derived. This condition

will depend on the frozen coefficients involved. The trick is then to choose a conservative time

step, covering all possible values of the frozen coefficient.
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Consider the given problem locally, i.e., close to some fixed location (x0, t0). If u is smooth,

we can approximate it by a constant value

α0 = u(x0, t0)

close to the point (x0, t0). This approximation leads to the equation

ut = α0uxx,

and the associated scheme,

Un+1
j − Un

j

k
= α0

Un
j+1 − 2Un

j + Un
j−1

h2
(19)

Applying von Neumann analysis to this linear problem, (we have seen this in class) we come

up with the stability condition

α0k/h
2 ≤ 1/2

Thus, for mesh parameters satisfying this bound, the scheme is stable, at least locally. In

order to derive a global bound, we observe that the exact solution

u(x, t) = x+ t ≤ 2

for x ∈ [0, 1] and 0 ≤ t ≤ 1. Thus, any frozen coefficient α0 is less than or equal to 2, and

thus the most restrictive requirement on the time step is given by

k ≤ h2
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