MTH 453/553 - Homework 1 Solutions

1. (20 points) [Solution to advection system]

Consider the wave equation

$$
u_{t t}=c^{2} u_{x x}
$$

written as a first order system of two equations in the form

$$
\begin{equation*}
\mathbf{y}_{t}+A \mathbf{y}_{x}=0 \tag{1}
\end{equation*}
$$

where

$$
A=\left[\begin{array}{cc}
0 & -c \\
-c & 0
\end{array}\right]
$$

Diagonalize A and decouple the system. Write this decoupled system in terms of the variable w. Determine the characteristics and, hence, w. Knowing w, determine $u(x, t)$ such that it satisfies the initial data

$$
u(x, 0)=\eta(x), \quad u_{t}(x, 0)=\mu(x)
$$

Answer: Let

$$
\mathbf{y}(x, t)=\left[\begin{array}{l}
y_{1}(x, t) \tag{2}\\
y_{2}(x, t)
\end{array}\right]=\left[\begin{array}{c}
u_{t}(x, t) \\
c u_{x}(x, t)
\end{array}\right]
$$

Using this definition of \mathbf{y}, the system of two first order equations written in vector form is given as above in (1).
The matrix A can be diagonalized as follows:

$$
A=P \Lambda P^{-1}=\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{rr}
c & 0 \\
0 & -c
\end{array}\right]\left[\begin{array}{rr}
1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]
$$

Let $\mathbf{w}=P^{-1} \mathbf{y} \Longrightarrow \mathbf{y}=P \mathbf{w}$. Multiplying (1) by P^{-1} we get the decoupled system

$$
P^{-1} \mathbf{y}_{t}+P^{-1} A \mathbf{y}_{x}=0 \Longrightarrow \mathbf{w}_{t}+\Lambda \mathbf{w}_{x}=0
$$

This can be written in scalar form as

$$
\begin{aligned}
\left(w_{1}\right)_{t}+c\left(w_{1}\right)_{x} & =0 \\
\left(w_{2}\right)_{t}-c\left(w_{2}\right)_{x} & =0
\end{aligned}
$$

The solution to this system is

$$
\begin{aligned}
& w_{1}(x, t)=w_{1}^{0}(x-c t) \\
& w_{2}(x, t)=w_{2}^{0}(x+c t)
\end{aligned}
$$

where

$$
\mathbf{w}(x, 0)=\left[\begin{array}{c}
w_{1}^{0}(x) \\
w_{2}^{0}(x)
\end{array}\right]
$$

Since $\mathbf{w}=P^{-1} \mathbf{y}$, this implies that

$$
\mathbf{w}(x, 0)=\left[\begin{array}{rr}
1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right] \mathbf{y}(x, 0)=\left[\begin{array}{c}
\frac{1}{2}\left(y_{1}^{0}(x)-y_{2}^{0}(x)\right) \\
\frac{1}{2}\left(y_{1}^{0}(x)+y_{2}^{0}(x)\right)
\end{array}\right]
$$

Hence,

$$
\mathbf{y}(x, t)=\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right] \mathbf{w}(x, t)=\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
\frac{1}{2}\left(y_{1}^{0}(x-c t)-y_{2}^{0}(x-c t)\right) \\
\frac{1}{2}\left(y_{1}^{0}(x+c t)+y_{2}^{0}(x+c t)\right)
\end{array}\right]
$$

So we have

$$
\mathbf{y}(x, t)=\frac{1}{2}\left[\begin{array}{c}
\left(y_{1}^{0}(x-c t)-y_{2}^{0}(x-c t)\right)-\left(y_{1}^{0}(x+c t)+y_{2}^{0}(x+c t)\right) \\
\left(y_{1}^{0}(x-c t)-y_{2}^{0}(x-c t)\right)+\left(y_{1}^{0}(x+c t)+y_{2}^{0}(x+c t)\right)
\end{array}\right]
$$

In terms of initial data for the function $u(x, t)$, note that

$$
y_{1}^{0}(x)=y_{1}(x, 0)=u_{t}(x, 0)=\mu(x)
$$

and

$$
y_{2}^{0}(x)=y_{2}(x, 0)=c u_{x}(x, 0)=c \eta^{\prime}(x)
$$

2. Consider the advection-diffusion equation

$$
u_{t}+a u_{x}=\nu u_{x x}
$$

with constant coefficients $\nu>0$ and a. Show that the Caucy problem is well-posed. What happens as $\nu \rightarrow 0$?
Answer: Fourier transform the advection-diffusion equation to get

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(u_{t}+a u_{x}-\nu u_{x x}\right) \mathrm{e}^{-i \xi x} d x=0
$$

This implies that

$$
\hat{u}_{t}(\xi, t)+a(i \xi) \hat{u}(\xi, t)-\nu(i \xi)^{2} \hat{u}(\xi, t)=0
$$

which can be written as

$$
\begin{equation*}
\hat{u}_{t}(\xi, t)=-\left(a i \xi+\nu \xi^{2}\right) \hat{u}(\xi, t) \tag{3}
\end{equation*}
$$

This is a time dependent ODE for the evolution of $\hat{u}(\xi, t)$ in time. The ODEs for different values of ξ are decoupled from one another. We have to solve an infinite number of ODEs, one for each value of ξ, but they are decoupled scalar equations rather than a coupled system. To solve (3) we need initial data $\hat{u}(\xi, 0)$ at $t=0$ for every value of ξ. Fourier trasform the initial data $u(x, 0)=\eta(x)$ to get

$$
\hat{u}(\xi, 0)=\hat{\eta}(\xi)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{e}^{-i \xi x} \eta(x) d x
$$

Thus, we now need to solve the initial value problem

$$
\begin{align*}
\hat{u}_{t}(\xi, t) & =-\left(a i \xi+\nu \xi^{2}\right) \hat{u}(\xi, t) \tag{4}\\
\hat{u}(\xi, 0) & =\hat{\eta}(\xi) \tag{5}
\end{align*}
$$

The solution to (4)-(5) is

$$
\hat{u}(\xi, t)=\mathrm{e}^{-\left(a i \xi+\nu \xi^{2}\right) t} \hat{\eta}(\xi)
$$

Using Parseval's identity we have

$$
\|u(t)\|^{2}=\|\hat{u}(t)\|^{2}=\int_{-\infty}^{\infty}|\hat{u}(\xi, t)|^{2} d \xi
$$

Thus,

$$
\begin{aligned}
\|u(t)\|^{2} & =\int_{-\infty}^{\infty}\left|\mathrm{e}^{-a i \xi t}\right|^{2}\left|\mathrm{e}^{-\nu \xi^{2} t}\right|^{2}|\hat{\eta}(\xi)|^{2} d \xi \\
& \leq\left(\sup _{-\infty<\xi<\infty}\left|\mathrm{e}^{-\nu \xi^{2} t}\right|^{2}\right) \int_{-\infty}^{\infty}|\hat{\eta}(\xi)|^{2} d \xi \\
& \leq \int_{-\infty}^{\infty}|\hat{\eta}(\xi)|^{2} d \xi \\
& =\int_{-\infty}^{\infty}|u(x, 0)|^{2} d x=\|u(\cdot, 0)\|^{2}
\end{aligned}
$$

Thus, the PDE is well posed (with $K=1$ and $\alpha=0$).
When $\nu \rightarrow 0$, we obtain the advection equation. In this case we have

$$
\|u(\cdot, t)\|^{2}=\|u(\cdot, 0)\|^{2}
$$

