
MTH 453/553 – Homework 1 Solutions
1. (20 points) [Solution to advection system]

Consider the wave equation
utt = c2uxx

written as a first order system of two equations in the form

yt + Ayx = 0, (1)

where

A =

[

0 −c
−c 0

]

.

Diagonalize A and decouple the system. Write this decoupled system in terms of the
variable w. Determine the characteristics and, hence, w. Knowing w, determine
u(x, t) such that it satisfies the initial data

u(x, 0) = η(x), ut(x, 0) = µ(x).

Answer: Let

y(x, t) =

[

y1(x, t)
y2(x, t)

]

=

[

ut(x, t)
cux(x, t)

]

(2)

Using this definition of y, the system of two first order equations written in vector
form is given as above in (1).

The matrix A can be diagonalized as follows:

A = PΛP−1 =

[

1 −1
1 1

] [

c 0
0 −c

] [

1/2 −1/2
1/2 1/2

]

Let w = P−1y =⇒ y = Pw. Multiplying (1) by P−1 we get the decoupled system

P−1yt + P−1Ayx = 0 =⇒ wt + Λwx = 0

This can be written in scalar form as

(w1)t + c(w1)x = 0

(w2)t − c(w2)x = 0

The solution to this system is

w1(x, t) = w0
1(x − ct)

w2(x, t) = w0
2(x + ct)

where

w(x, 0) =

[

w0
1(x)

w0
2(x)

]



Since w = P−1y, this implies that

w(x, 0) =

[

1/2 −1/2
1/2 1/2

]

y(x, 0) =

[ 1
2
(y0

1(x) − y0
2(x))

1
2
(y0

1(x) + y0
2(x))

]

Hence,

y(x, t) =

[

1 −1
1 1

]

w(x, t) =

[

1 −1
1 1

]







1

2

(

y0
1(x − ct) − y0

2(x − ct)
)

1

2

(

y0
1(x + ct) + y0

2(x + ct)
)







So we have

y(x, t) =
1

2

[

(y0
1(x − ct) − y0

2(x − ct)) − (y0
1(x + ct) + y0

2(x + ct))

(y0
1(x − ct) − y0

2(x − ct)) + (y0
1(x + ct) + y0

2(x + ct))

]

In terms of initial data for the function u(x, t), note that

y0
1(x) = y1(x, 0) = ut(x, 0) = µ(x)

and
y0

2(x) = y2(x, 0) = cux(x, 0) = cη′(x).

2. Consider the advection-diffusion equation

ut + aux = νuxx

with constant coefficients ν > 0 and a. Show that the Caucy problem is well-posed.
What happens as ν → 0?

Answer: Fourier transform the advection-diffusion equation to get

1√
2π

∫

∞

−∞

(ut + aux − νuxx) e−iξxdx = 0

This implies that
ût(ξ, t) + a(iξ)û(ξ, t) − ν(iξ)2û(ξ, t) = 0

which can be written as

ût(ξ, t) = −
(

aiξ + νξ2
)

û(ξ, t). (3)

This is a time dependent ODE for the evolution of û(ξ, t) in time. The ODEs for
different values of ξ are decoupled from one another. We have to solve an infinite
number of ODEs, one for each value of ξ, but they are decoupled scalar equations
rather than a coupled system. To solve (3) we need initial data û(ξ, 0) at t = 0 for
every value of ξ. Fourier trasform the initial data u(x, 0) = η(x) to get

û(ξ, 0) = η̂(ξ) =
1√
2π

∫

∞

−∞

e−iξxη(x)dx.



Thus, we now need to solve the initial value problem

ût(ξ, t) = −
(

aiξ + νξ2
)

û(ξ, t) (4)

û(ξ, 0) = η̂(ξ). (5)

The solution to (4)-(5) is

û(ξ, t) = e−(aiξ+νξ2)tη̂(ξ).

Using Parseval’s identity we have

||u(t)||2 = ||û(t)||2 =

∫

∞

−∞

|û(ξ, t)|2dξ.

Thus,

||u(t)||2 =

∫

∞

−∞

|e−aiξt|2|e−νξ2t|2|η̂(ξ)|2dξ

≤
(

sup
−∞<ξ<∞

|e−νξ2t|2
)

∫

∞

−∞

|η̂(ξ)|2dξ

≤
∫

∞

−∞

|η̂(ξ)|2dξ

=

∫

∞

−∞

|u(x, 0)|2dx = ||u(·, 0)||2.

Thus, the PDE is well posed (with K = 1 and α = 0).

When ν → 0, we obtain the advection equation. In this case we have

||u(·, t)||2 = ||u(·, 0)||2.


