MTH 453/553 - Homework 1

1. (20 points) [Solution to advection system]

Consider the wave equation

$$
u_{t t}=c^{2} u_{x x}
$$

written as a first order system of two equations in the form

$$
\mathbf{y}_{t}+A \mathbf{y}_{x}=0
$$

where

$$
A=\left[\begin{array}{cc}
0 & -c \\
-c & 0
\end{array}\right]
$$

Diagonalize A and decouple the system. Write this decoupled system in terms of the variable w. Determine the characteristics and, hence, w. Knowing w, determine $u(x, t)$ such that it satisfies the initial data

$$
u(x, 0)=\eta(x), \quad u_{t}(0, x)=\mu(x)
$$

2. (20 points) [Well-posedness of advection-diffusion]

Consider the advection-diffusion equation

$$
u_{t}+a u_{x}=\nu u_{x x}
$$

with constant coefficients $\nu>0$ and a. Show that the Cauchy problem is well-posed. What happens as $\nu \rightarrow 0$ (in particular, what happens to the bound on the norm of the solution)?

