MTH 452/552 - Homework 2

1. (10 points) (452:) [Uniqueness for an ODE]

Prove that the ODE

$$
u^{\prime}(t)=\frac{1}{t^{2}+u(t)^{2}}, \quad \text { for } t \geq 1
$$

has a unique solution for all time from any initial value $u(1)=\eta$.
2. (10 points) [Well-posedness for an ODE]

Discuss the well-posedness of the IVP

$$
\begin{aligned}
u^{\prime}(t) & =u(t)^{\frac{1}{3}} \\
u(0) & =\eta .
\end{aligned}
$$

3. [Lipschitz constant for an ODE]

Let $f(u)=\log (u)$.
(a) (10 points) Determine the best possible Lipschitz constant for this function over $2 \leq u<\infty$.
(b) (5 points) Is $f(u)$ Lipschitz continuous over $0<u<\infty$? Explain.
(c) (10 points) Consider the initial value problem

$$
\begin{aligned}
u^{\prime}(t) & =\log (u(t)) \\
u(0) & =2
\end{aligned}
$$

Explain why we know that this problem has a unique solution for all $t \geq 0$ based on the existence and uniqueness theory described in Section 5.2.1. (Hint: Argue that f is Lipschitz continuous in a domain that the solution never leaves, though the domain is not symmetric about $\eta=2$ as assumed in the theorem quoted in the book.)
4. (20 points) [Lipschitz constant for a system of ODEs]

Consider the system of ODEs

$$
\begin{aligned}
u_{1}^{\prime} & =3 u_{1}+4 u_{2}, \\
u_{2}^{\prime} & =5 u_{1}-6 u_{2} .
\end{aligned}
$$

Determine the Lipschitz constant for this system in the max-norm $\|\cdot\|_{\infty}$ and the 1-norm $\|\cdot\|_{1}$. (See Appendix A.3.)
5. (10 points) (552:) [Duhamel's principle]

Check that the solution $u(t)$ given by

$$
u(t)=\mathrm{e}^{A \cdot\left(t-t_{0}\right)} \eta+\int_{t_{0}}^{t} \mathrm{e}^{A \cdot(t-\tau)} g(\tau) d \tau
$$

satisfies the constant coefficient system

$$
u^{\prime}(t)=A u(t)+g(t)
$$

with initial condition $u(0)=\eta$. Hint: To differentiate the matrix exponential you can differentiate the Taylor series expansion of $e^{A t}$ (D.31) term by term. Note: the use of - in $A \cdot(t-\tau)$ above is meant to distinguish multiplication from the possibility of the matrix A being time-varying and evaluated at time $t-\tau$, i.e., $A(t-\tau)$.
6. (452:) [Problem stability] For each of the following matrices A, determine whether the system $u^{\prime}(t)=A u(t)$ is unstable, stable, or asymptotically stable.
(a) (5 points) $\left[\begin{array}{rr}-1 & 10 \\ 0 & -2\end{array}\right]$
(b) (5 points) $\left[\begin{array}{ll}1 & 3 \\ 3 & 1\end{array}\right]$
(c) $(5$ points $)\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$
7. (552:) [Problem stability] Consider the following variable coefficient matrix

$$
\left[\begin{array}{rr}
-\frac{1}{4}+\frac{3}{4} \cos 2 t & -\frac{3}{4} \sin 2 t \\
-\frac{3}{4} \sin 2 t & -\frac{1}{4}-\frac{3}{4} \cos 2 t
\end{array}\right]
$$

(a) (10 points) Determine the eigenvalues of the matrix. (Hint: you may want to use $X=\left[\begin{array}{rr}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right]$.)
(b) (5 points) Determine whether the system $u^{\prime}(t)=A(t) u(t)$ is unstable, stable, or asymptotically stable.

