MTH 452/552 - Homework 4

1. (10 points) [Derivation of Adams-Moulton]

Determine the coefficients $\beta_{0}, \beta_{1}, \beta_{2}$ for the third order, 2-step Adams-Moulton method using the expression for the local truncation error (from Section 5.9.1)

$$
\tau\left(t_{n+r}\right)=\frac{1}{k}\left(\sum_{j=0}^{r} \alpha_{j} u\left(t_{n+j}\right)-k \sum_{j=0}^{r} \beta_{j} u^{\prime}\left(t_{n+j}\right)\right)
$$

and taking a Taylor expansion of each function around t_{n}.
2. (15 points) [Characteristic polynomials and LTE for LMM]

Determine the characteristic polynomials $\rho(\zeta)$ and $\sigma(\zeta)$ for any three the following linear multistep methods. Also, verify that

$$
\sum_{j=0}^{r}\left(\frac{1}{q!} j^{q} \alpha_{j}-\frac{1}{(q-1)!} j^{q-1} \beta_{j}\right)=0
$$

for $q=1$.. p, and is not zero for $q=p+1$, where p is the order of the method.
(a) The 2-step Adams-Bashforth method

$$
U_{n+2}=U_{n+1}+\frac{k}{2}\left(-f\left(U_{n}\right)+3 f\left(U_{n+1}\right)\right)
$$

(b) The 2-step Adams-Moulton method

$$
U_{n+2}=U_{n+1}+\frac{k}{12}\left(-f\left(U_{n}\right)+8 f\left(U_{n+1}\right)+5 f\left(U_{n+2}\right)\right)
$$

(c) The 2-step Nyström method (explicit midpoint)

$$
U_{n+2}=U_{n}+2 k f\left(U_{n+1}\right)
$$

(d) The 2-step Milne-Simpson method (implicit Nyström)

$$
U_{n+2}=U_{n}+\frac{k}{3}\left(f\left(U_{n}\right)+4 f\left(U_{n+1}\right)+f\left(U_{n+2}\right)\right)
$$

(e) The 2-step Backward Differentiation Formula method (BDF)

$$
U_{n+2}=\frac{4}{3} U_{n+1}-\frac{1}{3} U_{n}+\frac{2 k}{3} f\left(U_{n+2}\right)
$$

3. (15 points) [Characteristic polynomials for LMM]

For the following three methods determine the first characteristic polynomial $\rho(\zeta)$ and find if the method is zero-stable, and if so, strongly or weakly stable.
(a) The 2-step Nyström method (explicit midpoint)

$$
U_{n+2}=U_{n}+2 k f\left(U_{n+1}\right)
$$

(b) The 2-step Backward Differentiation Formula method (BDF)

$$
3 U_{n+2}=4 U_{n+1}-U_{n}+2 k f\left(U_{n+2}\right)
$$

(c) The 3-step Backward Differentiation Formula method (BDF)

$$
11 U_{n+3}=18 U_{n+2}-9 U_{n+1}+2 U_{n}+6 k f\left(U_{n+3}\right)
$$

4. (10 points) [Predictor-corrector methods]

Show that the one-step Adams-Bashforth-Moulton method is actually an RK method (which one?). What is the order of this method? Is this consistent with expected order for a predictor-corrector method?

