MTH 452/552 - Homework 1

1. (40 points) [Method of Undetermined Coefficients]
(a) Use the method of undetermined coefficients to set up and solve the 3×3 Vandermonde system that would determine a centered finite difference approximation to $u^{\prime}(\bar{x})$ of the highest order possible based on 3 equally spaced points, i.e.,

$$
D_{-1: 1} u(\bar{x}):=c_{-1} u(\bar{x}-h)+c_{0} u(\bar{x})+c_{1} u(\bar{x}+h) \approx u^{\prime}(\bar{x}) .
$$

(MATLAB notation for the set of numbers from a to b by 1 is $a: b$.) Find the coefficients c_{-1}, c_{0}, and c_{1}.
Note: the resulting formula is called the centered 3-point approximation for the first derivative (eventhough the center point does not appear explicitly...hint).
(b) Check your answer using the MATLAB code fdstencil.m available from the author's website.
(c) Repeat (b) for 5 points, i.e., find
$D_{-2: 2} u(\bar{x}):=c_{-2} u(\bar{x}-2 h)+c_{-1} u(\bar{x}-h)+c_{0} u(\bar{x})+c_{1} u(\bar{x}+h)+c_{2} u(\bar{x}+2 h) \approx u^{\prime}(\bar{x})$.
(Note: although the algebra is tedious, one can find an explicit formula for these coefficients for any arbitrary number of points in a centered stencil.)
(d) Download and run the m-file fderror.m. Describe what it is doing.

On your own, try changing h to $10^{-1}, 10^{-2}, 10^{-3}, \ldots, 10^{-10}$. You should observe the predicted accuracy for larger values of h. For smaller values, numerical cancellation in computing the linear combination of u values impacts the accuracy observed. In fact, the higher order methods are more sensitive to the size of h.
(e) Test the finite difference formulas from 1 a and 1 c to approximate $u^{\prime}(1)$ for $u(x)=\sin (x)$ with values of h from $2^{-1}, 2^{-2}, 2^{-3}, \ldots, 2^{-8}$. Make a table of the approximate error vs. h for several values of h, as well as ratios of errors. Compare the observed order of accuracy against the predicted error from the leading term of the expression printed by fdstencil. Also produce a log-log plot of the absolute value of the error vs. h and verify (by eye) that the curves have the expected slopes.
You may either modify the m-file fderror.m or make your own script.
2. (10 points) (552:) [Higher Order Centered Differences] Note that the 5-point formula in 1c can be written as a linear combination of 3-point formulas with different step sizes, i.e.,

$$
D_{-2: 2}=c_{1} D_{-1: 1}+c_{2} D_{-2: 2: 2}
$$

where $D_{-2: 2: 2}$ is the 3-point formula from 1a with stepsize $2 h$. (MATLAB notation for the set of numbers from a to b by k is $a: k: b$.) Find the coefficients c_{1} and c_{2}. (Note: although the algebra here is even more tedious, one can find an explicit formula for these coefficients for any arbitrary (even) order of accuracy.)

