
MTH 351 – Lab 4

To see how good and bad various interpolation methods can be, use Matlab’s interpolation
routines on data generated from Runge’s function:

f(x) =
1

1 + x2
.

In Matlab, do the following:

1. Problem setup:

Generate N + 1 = 11 equally-spaced nodes xi in the interval [−5, 5]

N = 10;

x = linspace(-5,5,N+1); %to see values, omit the ;

and then evaluate f(x) at these nodes

f = inline(’1./(1+x.*x)’,’x’);

y = f(x);

The N + 1 points (xi, yi) are the data points to be interpolated by various methods.
Plot them to see where they are

plot(x,y,’o’)

title(’N+1 = 11 equally-spaced data points’)

Also generate lots of points ti at which to evaluate f , and the interpolants, for
plotting

t = [-5:.1:5];

Evaluate f at these ti’s and plot f(t) in a new figure window

figure;

plot(t,f(t),’-’)

title(’Runge function’)

1

2. Nth degree interpolating polynomial:

Use Matlab’s polyfit to construct (the coefficients of) the Nth degree interpolating
polynomial using the equally spaced nodes

PN = polyfit(x,y,N);

Now this can be evaluated anywhere in the interval [-5,5], e.g., at the ti’s

v = polyval(PN,t);

Find the inf-norm error ‖f(t)− PN(t)‖∞

err = norm(f(t)-v,inf)

and plot both f(t) and PN(t) on the same plot as the data points

figure;

plot(x,y,’o’,t,f(t),’-’,t,v,’--’)

title(sprintf(’f(t) and P {10}(t), err=%g’,err))

3. Interpolation at Chebychev nodes:

Generate N + 1 = 11 Chebychev nodes

K = N+1;

a=-5;

b=5;

xcheb=zeros(1,K);

for i=1:K

xcheb(i)=(a+b)/2 + (b-a)/2 * cos((i-.5)*pi/K);

end

ycheb = f(xcheb);

Follow the steps in 2 to produce the Nth degree interpolating polynomial PNcheb
based on the Chebychev nodes xcheb and the data ycheb. Then compute the
function values vcheb at the ti’s and the error ‖f(t)− PNcheb(t)‖∞, and plot both
f(t) and PNcheb(t) on the same plot as the Chebychev data. Compare the error and
the plot with those from 2. Comment on why one works better than the other.

4. Repeat 1, 2 and 3 with N = 20 and N = 50. Explain what behavior you observe.

2

5. (Optional) Piecewise linear interpolation:

Use Matlab’s interp1 to construct the piecewise linear interpolant of the original
data points from 1 evaluated at the ti’s

vlin = interp1(x,y,t,’linear’);

Repeat the steps of 2 to compute the error and plot. Compare error and plot with
those from the previous examples.

6. (Optional) Piecewise cubic interpolation:

Use Matlab’s interp1 to construct the piecewise cubic interpolant of the original
data points from 1 evaluated at the ti’s

vcub = interp1(x,y,t,’cubic’);

Repeat the steps of 2 to compute the error and plot. Compare error and plot with
those from the previous examples.

7. (Optional) Cubic spline interpolation:

Use Matlab’s interp1 to construct the cubic spline interpolant of the original data
points from 1 evaluated at the ti’s

vspl = interp1(x,y,t,’spline’);

Repeat the steps of 2 to compute the error and plot. Compare error and plot with
those from the previous examples.

3

