A SECANT METHOD FOR MULTIPLE ROOTS

RICHARD F. KING*

Abstract

. A superlinear procedure for finding a multiple root is presented. In it the secant method is applied to the given function divided by a divided difference whose increment shrinks toward zero as the root is approached. Two function evaluations per step are required, but no derivatives need be calculated.

CR Category: 5.15.
Key words and phrases: nonlinear equation, root finding, multiple root, secant method, Steffensen procedure, order of convergence, efficiency, stability.

1. Introduction.

We seek a method of secant type for finding a real, multiple root α of the nonlinear equation $f(x)=0$. But direct application of the secant method to f,

$$
\begin{equation*}
x_{n+2}=x_{n+1}-\left(x_{n}-x_{n+1}\right) \frac{f_{n+1}}{f_{n}-f_{n+1}}, \quad f_{i} \equiv f\left(x_{i}\right) \tag{1}
\end{equation*}
$$

yields a procedure whose convergence for a root of multiplicity $m>1$ apparently is linear at best (see Espelid [3], Stewart [5], and Woodhouse [7]). That is, for given initial values x_{0} and x_{1}, the order of convergence p is 1 in

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\varepsilon_{n+1}}{\varepsilon_{n}^{p}}=K_{m}, \tag{2}
\end{equation*}
$$

for errors $\varepsilon_{i}=x_{i}-\alpha$. Stewart [5] has computed K_{m} for various $m>1$ as the positive root of $K^{m}+K^{m-1}-1=0$.

Since it is well known that the function $F=f / f^{\prime}$ has a simple root at α (see Traub [1], p. 235, for example), we can avoid the difficulty of (slow) linear convergence by applying (1) to F instead of to f. Using F, however, requires that a derivative as well as a function value be calculated each step; moreover f^{\prime} is frequently more complicated than f.

The function F may also be used in Newton's method,

$$
\begin{equation*}
x_{1}=x_{0}-\frac{F_{0}}{F_{0}^{\prime}}=x_{0}-\frac{f_{0}}{f_{0}^{\prime}} \frac{1}{1-\frac{f_{0} f_{0}^{\prime \prime}}{f_{0}^{\prime 2}}}, \tag{3}
\end{equation*}
$$

[^0]where here and henceforth we suppress n in the subscripts. Since F has a simple root at α, the process converges quadratically ($p=2$), whereas f itself in Newton's method yields linear convergence with $K_{m}=(m-1) / m$ (see Rall [2]). The price of gaining quadratic convergence is having to calculate not only f and f^{\prime} but also $f^{\prime \prime}$.

Inspired by a procedure due to Steffensen, Esser [6] has recently proposed that the derivatives of f in (3) be replaced by divided differences. The increment ($-f$) for these differences is not constant, however, but shrinks as the root is approached. Such a scheme is a natural way of defining differences with the desired derivative properties. Esser's method indeed is quadratic, calls for three function evaluations per step, and provides the multiplicity m as well as the root α. Its efficiency index (see Traub [1], p. 263) is $2^{\frac{1}{3}}=1.260$.

2. A method for multiple roots.

In the same spirit we propose for multiple roots that the secant method be used not with the function $F=f / f^{\prime}$ but rather with

$$
\begin{equation*}
G=\frac{f(x)}{\frac{f(x-f(x))-f(x)}{(x-f(x))-x}}=\frac{-f^{2}(x)}{f(x-f(x))-f(x)} . \tag{4}
\end{equation*}
$$

Here again f^{\prime} has been replaced by a divided difference of f, with increment $(-f)$. It will be instructive to compare G with F, to see why both yield superlinear convergence when used as secant method functions.

First of all we want to find the value of F and its first three derivatives at α. Note that if the function f has a root of multiplicity m at α, then it may be written as

$$
\begin{equation*}
f(x)=(x-\alpha)^{m} g(x), g(\alpha) \neq 0 \tag{5}
\end{equation*}
$$

Furthermore since the secant algorithm (1) gives x_{2} as a linear function of x_{0} and x_{1}, it follows that a translation of f by $(x-\alpha)$ enables us without loss of generality to take $\alpha=0$. Consequently $F(\alpha)$ may be expressed in terms of g as

$$
\begin{equation*}
F(0)=\left.\frac{x g(x)}{m g(x)+x g^{\prime}(x)}\right|_{x=0}=0 \tag{6}
\end{equation*}
$$

i.e., α is a root of F. Differentiating F we see that

$$
\begin{equation*}
F^{\prime}(0)=\left.\frac{m g^{2}+x^{2}\left(g^{\prime 2}-g g^{\prime \prime}\right)}{\left(m g+x g^{\prime}\right)^{2}}\right|_{x=0}=\frac{1}{m} \neq 0 \tag{7}
\end{equation*}
$$

so that in fact α is a simple root of F. Further differentiation shows that

$$
\begin{equation*}
F^{\prime \prime}(0)=-\frac{2}{m^{2}} \frac{g^{\prime}(0)}{g(0)} \tag{8}
\end{equation*}
$$

and that

$$
\begin{equation*}
F^{\prime \prime \prime}(0)=\frac{6(m+1)}{m^{3}}\left(\frac{g^{\prime}(0)}{g(0)}\right)^{2}-\frac{6}{m^{2}} \frac{g^{\prime \prime}(0)}{g(0)} . \tag{9}
\end{equation*}
$$

It is known (for example, see Anderson and Björck [4], p. 258) that the asymptotic error equation for the secant method with a function F having a simple root at α is

$$
\begin{equation*}
\varepsilon_{2} \cong\left\{\frac{1}{2} \frac{F^{\prime \prime}(\alpha)}{F^{\prime}(\alpha)}\right\} \varepsilon_{0} \varepsilon_{1}+\left\{\frac{1}{6} \frac{F^{\prime \prime \prime}(\alpha)}{F^{\prime}(\alpha)}-\left(\frac{1}{2} \frac{F^{\prime \prime}(\alpha)}{F^{\prime}(\alpha)}\right)^{2}\right\} \varepsilon_{0} \varepsilon_{1}\left(\varepsilon_{0}+\varepsilon_{1}\right) \tag{10}
\end{equation*}
$$

where the coefficients may be written in terms of g and its derivatives at α by means of (7), (8), and (9). This error equation shows that for any multiplicity m the secant method (1) using F is superlinear. The asymptotic convergence rate, in fact, is 1.618 .

But what about the function G ? We can expand $f(x-f(x))$ in a Taylor series about x to get, for small F,

$$
\begin{align*}
G(x) & =\frac{-f^{2}(x)}{\left\{f(x)-f(x) f^{\prime}(x)+\frac{1}{2} f^{2}(x) f^{\prime \prime}(x)-\frac{1}{6} f^{3}(x) f^{\prime \prime \prime}(x)+\ldots\right\}-f(x)} \tag{11}\\
& =F\left\{1+\frac{1}{2} F f^{\prime \prime}-\frac{1}{6} F f f^{\prime \prime \prime}+\ldots+\frac{1}{4} F^{2} f^{\prime \prime 2}+\ldots\right\}
\end{align*}
$$

Evaluating at $\alpha=0$ the results of some very tedious differentiations, we conclude that G and its derivatives at any α can be written as

$$
\left\{\begin{align*}
G(\alpha)= & 0 \\
G^{\prime}(\alpha)= & F^{\prime}(\alpha)=\frac{1}{m} \tag{12}\\
G^{\prime \prime}(\alpha)= & F^{\prime \prime}(\alpha)+F^{\prime 2}(\alpha) f^{\prime \prime}(\alpha)=-\frac{2}{m^{2}} \frac{g^{\prime}(\alpha)}{g(\alpha)}+\frac{1}{m^{2}} f^{\prime \prime}(\alpha) \\
G^{\prime \prime \prime}(\alpha)= & F^{\prime \prime \prime}(\alpha)+3 F^{\prime 2}(\alpha) f^{\prime \prime \prime}(\alpha)+3 F^{\prime \prime}(\alpha) F^{\prime}(\alpha) f^{\prime \prime}(\alpha) \\
& +\frac{3}{2} F^{\prime 3}(\alpha) f^{\prime \prime 2}(\alpha)-F^{\prime 2}(\alpha) f^{\prime}(\alpha) f^{\prime \prime \prime}(\alpha) \\
= & \left\{\frac{6(m+1)}{m^{3}}\left(\frac{g^{\prime}(\alpha)}{g(\alpha)}\right)^{2}-\frac{6}{m^{2}} \frac{g^{\prime \prime}(\alpha)}{g(\alpha)}\right\}+\left\{\frac{3}{m^{2}}\right\} f^{\prime \prime \prime}(\alpha) \\
& -\left\{\frac{6}{m^{3}} \frac{g^{\prime}(\alpha)}{g(\alpha)}\right\} f^{\prime \prime}(\alpha)+\left\{\frac{3}{2 m^{3}}\right\} f^{\prime \prime 2}(\alpha)-\left\{\frac{1}{m^{2}}\right\} f^{\prime}(\alpha) f^{\prime \prime \prime}(\alpha) .
\end{align*}\right.
$$

Furthermore the derivatives of f in (12) are given in terms of g and its derivatives at the root α, and for various values of multiplicity m, as entries in the following table:

$$
\begin{array}{ccccc}
& m=1 & m=2 & m=3 & m \geqq 4 \\
f^{\prime}(\alpha) & g(\alpha) & 0 & 0 & 0 \\
f^{\prime \prime}(\alpha) & 2 g^{\prime}(\alpha) & 2 g(\alpha) & 0 & 0 \\
f^{\prime \prime \prime}(\alpha) & 3 g^{\prime \prime}(\alpha) & 6 g^{\prime}(\alpha) & 6 g(\alpha) & 0
\end{array}
$$

Thus G has a simple root at α, and otherwise exhibits benavior quite similar to that of F.

When G is used in the secant method,

$$
\begin{equation*}
x_{2}=x_{1}-\left(x_{0}-x_{1}\right) \frac{G_{1}}{G_{0}-G_{1}} \tag{13}
\end{equation*}
$$

it produces superlinear convergence. The asymptotic error equation for this, the proposed method, is

$$
\begin{equation*}
\varepsilon_{2} \cong\left\{\frac{1}{2} \frac{G^{\prime \prime}(\alpha)}{G^{\prime}(\alpha)}\right\} \varepsilon_{0} \varepsilon_{1}+\left\{\frac{1 G^{\prime \prime \prime}(\alpha)}{6}-\left(\frac{1}{G^{\prime}(\alpha)} \frac{G^{\prime \prime}(\alpha)}{G^{\prime}(\alpha)}\right)^{2}\right\} \varepsilon_{0} \varepsilon_{1}\left(\varepsilon_{0}+\varepsilon_{1}\right) \tag{14}
\end{equation*}
$$

It is well known that for this procedure the order of convergence is $p=\left(1+5^{\frac{1}{2}}\right) / 2$ $=1.618$. Since the two function evaluations $f\left(x_{1}\right)$ and $f\left(x_{1}-f\left(x_{1}\right)\right)$ are required each step, it follows that the efficiency index is $(1.618)^{\frac{1}{2}}=1.272$.

Woźniakowski [8] has shown that secant iteration such as that proposed is stable provided only that G be computed by a well-behaved algorithm.* For example, a polynomial f used in forming G should be evaluated by Horner's rule rather than term by term. Furthermore one must remember that in order to calculate a multiple root accurately it is necessary to use multiprecision arithmetic.

3. Finding the multiplicity m.

From (11) and (6) we can see that for small ε_{1}

$$
\begin{equation*}
G_{1} \doteq F_{1}=\frac{\varepsilon_{1} g\left(x_{1}\right)}{m g\left(x_{1}\right)+\varepsilon_{1} g^{\prime}\left(x_{1}\right)} \doteq \frac{\varepsilon_{1}}{m} . \tag{15}
\end{equation*}
$$

Similarly we know that $G_{2} \doteq \varepsilon_{2} / m$. Furthermore $\varepsilon_{2}-\varepsilon_{1}=x_{2}-x_{1}$. Consequently when nearing the root α we can estimate its multiplicity by computing

$$
\begin{equation*}
m \doteq \frac{x_{2}-x_{1}}{G_{2}-G_{1}} \tag{16}
\end{equation*}
$$

Thus m is approximately the reciprocal of the divided difference of G for successive iterates x_{1} and x_{2}. It may be computed and displayed at each step along with the current iterate.

[^1]
4. Examples.

Results from three examples computed (in quadruple precision) on an IBM 370 are shown in Tables 1-3. In each case the predicted error ε_{2} as calculated from (14) is seen to be a good approximation to the actual error $x-\alpha$, and the estimated multiplicity m from (16) approaches its actual value. No careful convergence criteria were either discussed in the analysis or used in the examples. The secant method was also applied to f directly for the examples; some 47,69 , and 66 steps, respectively, were required to obtain final accuracy comparable to that of the proposed method.

REFERENCES

1. J. F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, N.J. (1964).
2. L. B. Rall, Convergence of the Newton process to multiple solutions, Numerische Mathematik 9 (1966), 23-37.
3. T. O. Espelid, On the behavior of the secant method near a multiple root, BIT 11 (1972), 112-115.
4. N. Anderson and \AA. Björck, A new high order method of regula falsi type for computing a root of an equation, BIT 13 (1975), 253-264.
5. G. W. Stewart, The convergence of multipoint iterations to multiple zeros, SIAM J. Numer. Anal. 11 (1974), 1105-1120.
6. H. Esser, Eine stets quadratisch konvergente Modifikation des Steffensen-Verfahrens, Computing 14 (1975), 367-369.
7. D. Woodhouse, A note on the secant method, BIT 15 (1975), 323-327.
8. H. Woźniakowski, Numerical stability for solving nonlinear equations, Numerische Mathematik 27 (1977), 373-390.
Table 1.

	f	g		α	$g(\alpha)$	$\mathrm{g}^{\prime}(\alpha)$	$g^{\prime \prime}(\alpha)$	$G^{\prime}(\alpha)$	$G^{\prime \prime}(\alpha)$) $G^{\prime \prime \prime}(a)$	
	$(x-1)^{2} \tan (\pi x / 4)$	$\tan (\pi x / 4)$	2	1	1	$\pi / 2$	$\pi^{2} / 4$	1/2	$-\pi / 4$	$43 \pi^{2} / 6+3 \pi / 2$	
$\varepsilon_{n+2} \cong(-\pi / 4+1 / 2) \varepsilon_{n} \varepsilon_{n+1}+3 \pi / 4 \varepsilon_{n} \varepsilon_{n+1}\left(\varepsilon_{n}+\varepsilon_{n+1}\right)$											
n	x	$\cdots f$			G		-		$\varepsilon \quad m$		
0	. 6	. 0815241	-. 359569				-. 4				
1	. 7	. 0551521	-. 205290				-. 3				
2	. 833064	. 0213742	-. 0934212				-. 166936		-. 232168		1.1894645
3	. 9441851	. 00285348	-. 0285632				-. 0558149			-. 0693915	1.7132998
4	. 99312248	. 0000467920	-. 00344590				-. 00687752			-. 00754945	1.9483516
5	. 999836316	.267857(-7)	-.818460(-4)				-. 000163684			. 000166258	1.9957541
6	. 999999660145	.115501(-12)	-.169928(-6)				-.339855(-6)			. 339961 (-6)	1.9999062
7	. 999999999984	.252743(-21)	-.794895(-11)				-. 158979 (-10)			-.158979(-10)	1.9999998

Table 2.

		$f \quad g \quad m$	$\alpha \quad g(\alpha) \quad g^{\prime}(\alpha)$	$g^{\prime \prime}(\alpha) \quad G^{\prime}(\alpha)$	$G^{\prime \prime}(\alpha) \quad G^{\prime \prime \prime}(\alpha)$	
		$x(x-2)^{3} \quad x \quad 3$	$2 \quad 21$	$0 \quad 1 / 3$	-1/9 38/9	
$\varepsilon_{n+2} \cong-1 / 6 \varepsilon_{n} \varepsilon_{n+1}+25 / 12 \varepsilon_{n} \varepsilon_{n+1}\left(\varepsilon_{n}+\varepsilon_{n+1}\right)$						
n	x	f	G	$x-\alpha$	ε	m
0	1.0	-1.0	-1.0	-1.0		
1	1.1	-. 8019	-. 803700	-. 9		
2	1.509423	$-.178210$	-. 250516	-. 490577	-3.71250	. 74012233
3	1.694836	-. 0481646	-. 124869	-. 305164	-1.35268	1.4756629
4	1.879101	$-.00332062$	$-.0422846$	-. 120899	-. 273133	2.2312244
5	1.9734474	-. 0000369443	-. 00890302	-. 0265526	-. 0388973	2.8263022
6	1.99861000	-. 536751(-8)	$-.000463443$	-. 00139000	-. 00152117	2.9815029
7	1.99999175536	-.112084(-14)	-. 00000274822	-. 00000824464	-. 00000829992	2.9992887
8	1.99999999806	$-.146785(-25)$	-. $647783(-9)$	-. $194335(-8)$	-.194339(-8)	2.9999959

ARGONNE NATIONAL LABORATORY
9700 SOUTH CASS AVENUE
ARGONNE, ILLINOIS 60439
U.S.A.

[^0]: Received March 2. 1977. Revised July 27, 1977.

 * Work supported by the U.S. Energy Research and Development Administration.

[^1]: * Thanks are due to the referee for raising the question of the method's stability.

