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A S E C A N T  M E T H O D  F O R  M U L T I P L E  R O O T S  

RICHARD F. KING* 

Abstract .  

A superlinear procedure for finding a multiple root is presented. In it the secant method 
is applied to the given function divided by a divided difference whose increment shrinks 
toward zero as the root is approached. Two function evaluations per step are required, but 
no derivatives need be calculated. 
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1. Introduction.  

We seek a method of secant type for finding a real, multiple root e of the 
nonlinear equation f ( x ) = 0 .  But direct application of the secant method to f 

(1) x,+2 = Xn+l__(Xn__Xn+l) f ,+ l  f~=f(x i )  ' 
f.-f.+,' 

yields a procedure whose convergence for a root  of multiplicity m > 1 apparently is 
linear at best (see Espelid [3], Stewart [5], and Woodhouse [7]). That is, for given 
initial values Xo and x~, the order of convergence p is 1 in 

l ime"+l  = K , . ,  (2) .- .~ g.P 

for errors e~= x~-  ~. Stewart [5] has computed K,. for various m > 1 as the posi- 
tive root  of K m + K " -  ~ - 1 = 0. 

Since it is well known that the function F =J / f '  has a simple root at = (see 
Traub [1], p. 235, for example), we can avoid the difficulty of  (slow) linear 
convergence by applying (1) to F instead of t o f  Using F, however, requires that a 
derivative as well as a function value be calculated each step; moreover f '  is 
frequently more complicated than f. 

The function F may also be used in Newton's method, 

Fo fo 1 
(3) xi = X o  , - X o  , ,  

Fo f'o f o f o  ' 
t - - - -  

f'o 2 
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where here and henceforth we suppress n in the subscripts. Since F has a simple 
root at ~, the process converges quadratically (p = 2), whereas f i t se l f  in Newton's 
method yields linear convergence with K,, = ( m -  1)/m (see Rall [2]). The price of 
gaining quadratic convergence is having to calculate not only f and f '  but also f " .  

Inspired by a procedure due to Steffensen, Esser [6] has recently proposed that 
the derivatives of f i n  (3) be replaced by divided differences. The increment ( - f )  
for these differences is not constant, however, but shrinks as the root is 
approached. Such a scheme is a natural way of defining differences with the 
desired derivative properties. Esser's method indeed is quadratic, calls for three 
function evaluations per step, and provides the multiplicity m as well as the root ~. 

1 

Its efficiency index (see Traub [1], p. 263) is 27= 1.260. 

2. A method for multiple roots. 

In the same spirit we propose for multiple roots that the secant method be used 

not with the function F =f / f '  but rather with 

(4) G f ( x )  - f 2 ( x )  
f ( x - f ( x ) ) - f ( x )  - f ( x - f ( x ) ) - f ( x )  " 

( x - f ( x ) ) - x  

Here again f '  has been replaced by a divided difference off,  with increment ( - f ) .  
It will be instructive to compare G with F, to see why both yield superlinear 
convergence when used as secant method functions. 

First of all we want to find the value of F and its first three derivatives at ~. 
Note that if the function f h a s  a root of multiplicity m at ~, then it may be written 
a s  

(5) f ( x )  = (x-oO'~g(x), g ( , ) ,  0. 

Furthermore since the secant algorithm (1) gives x2 as a linear function of Xo and 
xl, it follows that a translation of f by ( x - ~ )  enables us without loss of generality 
to t~tke ~=0.  Consequently F( . )  may be expressed in terms of g as 

(6) F(0) = xg(x) x=0 
mg (x) + xg'(x) = 0 ,  

i.e., ~ is a root of F. Differentiating F we see that 

(7) F' (0) = mgz + x2 (g,2 _ gg")l 1 
- - , - ~ -  = - - 4 = 0  
(mg ÷ xg ) I~ = o m ' 

so that in fact ~ is a simple root of F .  Further differentiation shows that 

2 g'(0) 
(8) F"(0) = m 2 g(0) 
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and that 

6(m+l)(g'(O)'~ z 6 g" (0) (9) F'"(0) - 
m 3 \g(O)) m 2 g(0) 

It is known (for example, see Anderson and Bj6rck [4] ,  p. 258) that the 
asymptot ic  error equation for the secant m e t h o d  with a function F having a 

simple root at a is 

,,, S1F"(~)],e e ~IF'"(~) flF"(c~)'~:] , . , 

where the coefficients may be written in terms of g and its derivatives at ~ by 
means of (7), (8), and (9). This error equation shows that for any multiplicity m the 
secant method (1) using F is superlinear. The asymptotic convergence rate, in fact, 
is 1.618. 

But what about the function G? We can expand f(x-f(x)) in a Taylor series 
about x to get, for small F, 

--f2(x) 
(11) G(x) = {f(x)_f(x)f,(x)+½f2(x)f,,(x)_~f3(x)f,,,(x)+. " . } - f ( x )  

F{l+½Ff'--~Fff'"+ 1 2 H2 . . . .  + ~ F f  + . . . } .  

Evaluating at a = 0 the results of some very tedious differentiations, we conclude 
that G and its derivatives at any a can be written as 

(12) 

I G(~) = 0 
c ' (~)  F'(~) = 1 

m 

. m g(~) m 

I G'"(c 0 F'"(~)+3F'2(oOf"(~)+3F"(~)F'(~)f"(c~ ) 
+ ~F,3 (~)f, 2(a) _ F,2 (c~)f' (00f'" (a) 

{ '6(m+l)[g  (~)'~z 6 g"(u)'l ( 3 ] . . . . . .  

i "  (.) + i " '  I ' ( , ) i " ' ( . ) .  
[m gt~)J [zm J [m J 

Furthermore the derivatives of f i n  (12) are given in terms of g and its derivatives 
at the root ~, and for various values of multiplicity m, as entries in the following 
table: 
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m = l  m = 2  m = 3  m > 4  

f ' (c 0 g(~) 0 0 0 
f"(~) 2g'(~) 2g(~) 0 0 
f '"(~) 3g"(,) 6g'(~) 6g(~) 0 .  

Thus G has a simple root at ~, and otherwise exhibits ~enavior quite similar to 
that of F. 

When G is used in the secam method, 

G1 
x i  - (x0 - x l )  Go (13) x2 = _ G  1 

it produces superlinear convergence. The_asymptotic error equation for this, the 
proposed method, is 

f l  G"(a)) )'1 G'i'(a ) /'1 G"(a)'~ 2) , 

It is well known that for this procedure the order of convergence is p = (1 + 5¢)/2 
= 1.618. Since the two function evaluations f(xl) and f ( x l - f (x l ) )  are required 
each step, it follows that the efficiency index is (1.618) ~= 1.272. 

Wo2niakowski [8] has shown that secant iteration such as that proposed is 
stable provided only that G be computed by a well-behaved algorithm.* For 
example, a polynomial f u s e d  in forming G should be evaluated by Homer's rule 
rather than term by term. Furthermore one must remember that in order to 
calculate a multiple root accurately it is necessary to use multiprecision 
arithmetic. 

3. Finding the multiplicity m. 

From (11) and (6) we can see that for small ~1 

e l g ( x l )  . ~ 
(15) G~ "-- F 1 = = - - .  

mg(xl)+eig'(xl) m 

Similarly we know that G 2-~2/m. Furthermore e 2 - e  1 = x 2 - x l .  Consequently 
when nearing the root c~ we can estimate its multiplicity by computing 

X 2 - -  X l 
(16) m "- 

G 2 - G i 

Thus m is approximately the reciprocal of the divided difference of G for successive 

iterates Xl and x 2. It may be computed ,and displayed at each step along with the 
current iterate. 

* Thanks  are due to the referee for ra is ing the ques t ion  of the me thod ' s  stabili ty.  
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4. Examples. 

Results from three examples computed (in quadruple precision) on an IBM 370 
are shown in Tables 1-3. In each case the predicted error e2 as calculated from 
(14) is seen to be a good approximation to the actual error x - e ,  and the 
estimated multiplicity m from (16) approaches its actual value. No  careful 
convergence criteria were either discussed in the analysis or used in the examples. 
The secant method was also applied to f directly for the examples; some 47, 69, 
and 66 steps, respectively, were required to obtain final accuracy comparable to 
that of the proposed method. 
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