A SECANT METHOD FOR MULTIPLE ROOTS

RICHARD F. KING*

Abstract.

A superlinear procedure for finding a multiple root is presented. In it the secant method is applied to the given function divided by a divided difference whose increment shrinks toward zero as the root is approached. Two function evaluations per step are required, but no derivatives need be calculated.

CR Category: 5.15.

Key words and phrases: nonlinear equation, root finding, multiple root, secant method, Steffensen procedure, order of convergence, efficiency, stability.

1. Introduction.

We seek a method of secant type for finding a real, multiple root α of the nonlinear equation f(x)=0. But direct application of the secant method to f,

(1)
$$x_{n+2} = x_{n+1} - (x_n - x_{n+1}) \frac{f_{n+1}}{f_n - f_{n+1}}, \quad f_i \equiv f(x_i),$$

yields a procedure whose convergence for a root of multiplicity m > 1 apparently is linear at best (see Espelid [3], Stewart [5], and Woodhouse [7]). That is, for given initial values x_0 and x_1 , the order of convergence p is 1 in

(2)
$$\lim_{n\to\infty}\frac{\varepsilon_{n+1}}{\varepsilon_n^p} = K_m$$

for errors $\varepsilon_i = x_i - \alpha$. Stewart [5] has computed K_m for various m > 1 as the positive root of $K^m + K^{m-1} - 1 = 0$.

Since it is well known that the function F = f/f' has a simple root at α (see Traub [1], p. 235, for example), we can avoid the difficulty of (slow) linear convergence by applying (1) to F instead of to f. Using F, however, requires that a derivative as well as a function value be calculated each step; moreover f' is frequently more complicated than f.

The function F may also be used in Newton's method,

(3)
$$x_1 = x_0 - \frac{F_0}{F'_0} = x_0 - \frac{f_0}{f'_0} \frac{1}{1 - \frac{f_0 f''_0}{f'_0^2}},$$

Received March 2. 1977. Revised July 27, 1977.

^{*} Work supported by the U.S. Energy Research and Development Administration.

where here and henceforth we suppress n in the subscripts. Since F has a simple root at α , the process converges quadratically (p=2), whereas f itself in Newton's method yields linear convergence with $K_m = (m-1)/m$ (see Rall [2]). The price of gaining quadratic convergence is having to calculate not only f and f' but also f''.

Inspired by a procedure due to Steffensen, Esser [6] has recently proposed that the derivatives of f in (3) be replaced by divided differences. The increment (-f) for these differences is not constant, however, but shrinks as the root is approached. Such a scheme is a natural way of defining differences with the desired derivative properties. Esser's method indeed is quadratic, calls for three function evaluations per step, and provides the multiplicity m as well as the root α . Its efficiency index (see Traub [1], p. 263) is $2^{\frac{1}{3}} = 1.260$.

2. A method for multiple roots.

In the same spirit we propose for multiple roots that the secant method be used not with the function F = f/f' but rather with

(4)
$$G = \frac{f(x)}{\frac{f(x-f(x))-f(x)}{(x-f(x))-x}} = \frac{-f^2(x)}{f(x-f(x))-f(x)}$$

Here again f' has been replaced by a divided difference of f, with increment (-f). It will be instructive to compare G with F, to see why both yield superlinear convergence when used as secant method functions.

First of all we want to find the value of F and its first three derivatives at α . Note that if the function f has a root of multiplicity m at α , then it may be written as

(5)
$$f(x) = (x - \alpha)^m g(x), g(\alpha) \neq 0$$
.

Furthermore since the secant algorithm (1) gives x_2 as a linear function of x_0 and x_1 , it follows that a translation of f by $(x - \alpha)$ enables us without loss of generality to take $\alpha = 0$. Consequently $F(\alpha)$ may be expressed in terms of g as

(6)
$$F(0) = \frac{xg(x)}{mg(x) + xg'(x)}\Big|_{x=0} = 0,$$

i.e., α is a root of F. Differentiating F we see that

(7)
$$F'(0) = \frac{mg^2 + x^2(g'^2 - gg'')}{(mg + xg')^2}\Big|_{x=0} = \frac{1}{m} \neq 0,$$

so that in fact α is a simple root of F. Further differentiation shows that

(8)
$$F''(0) = -\frac{2}{m^2} \frac{g'(0)}{g(0)}$$

and that

(9)
$$F'''(0) = \frac{6(m+1)}{m^3} \left(\frac{g'(0)}{g(0)}\right)^2 - \frac{6}{m^2} \frac{g''(0)}{g(0)}.$$

It is known (for example, see Anderson and Björck [4], p. 258) that the asymptotic error equation for the secant method with a function F having a simple root at α is

(10)
$$\varepsilon_{2} \cong \left\{ \frac{1}{2} \frac{F''(\alpha)}{F'(\alpha)} \right\} \varepsilon_{0} \varepsilon_{1} + \left\{ \frac{1}{6} \frac{F'''(\alpha)}{F'(\alpha)} - \left(\frac{1}{2} \frac{F''(\alpha)}{F'(\alpha)} \right)^{2} \right\} \varepsilon_{0} \varepsilon_{1} (\varepsilon_{0} + \varepsilon_{1}) ,$$

where the coefficients may be written in terms of g and its derivatives at α by means of (7), (8), and (9). This error equation shows that for any multiplicity m the secant method (1) using F is superlinear. The asymptotic convergence rate, in fact, is 1.618.

But what about the function G? We can expand f(x-f(x)) in a Taylor series about x to get, for small F,

(11)
$$G(x) = \frac{-f^2(x)}{\{f(x) - f(x)f'(x) + \frac{1}{2}f^2(x)f''(x) - \frac{1}{6}f^3(x)f'''(x) + \dots\} - f(x)}$$
$$= F\{1 + \frac{1}{2}Ff'' - \frac{1}{6}Fff''' + \dots + \frac{1}{4}F^2f''^2 + \dots\}.$$

Evaluating at $\alpha = 0$ the results of some very tedious differentiations, we conclude that G and its derivatives at any α can be written as

$$\begin{cases}
G(\alpha) = 0 \\
G'(\alpha) = F'(\alpha) = \frac{1}{m} \\
G''(\alpha) = F''(\alpha) + F'^{2}(\alpha)f''(\alpha) = -\frac{2}{m^{2}}\frac{g'(\alpha)}{g(\alpha)} + \frac{1}{m^{2}}f''(\alpha) \\
G'''(\alpha) = F'''(\alpha) + 3F'^{2}(\alpha)f'''(\alpha) + 3F''(\alpha)F'(\alpha)f''(\alpha) \\
+ \frac{3}{2}F'^{3}(\alpha)f''^{2}(\alpha) - F'^{2}(\alpha)f'(\alpha)f'''(\alpha) \\
= \left\{\frac{6(m+1)}{m^{3}}\left(\frac{g'(\alpha)}{g(\alpha)}\right)^{2} - \frac{6}{m^{2}}\frac{g''(\alpha)}{g(\alpha)}\right\} + \left\{\frac{3}{m^{2}}\right\}f'''(\alpha) \\
- \left\{\frac{6}{m^{3}}\frac{g'(\alpha)}{g(\alpha)}\right\}f''(\alpha) + \left\{\frac{3}{2m^{3}}\right\}f'''^{2}(\alpha) - \left\{\frac{1}{m^{2}}\right\}f'(\alpha)f'''(\alpha)
\end{cases}$$

Furthermore the derivatives of f in (12) are given in terms of g and its derivatives at the root α , and for various values of multiplicity m, as entries in the following table:

	m = 1	m = 2	m = 3	$m \ge 4$
$f'(\alpha)$	$g(\alpha)$	0	0	0
$f''(\alpha)$	$2g'(\alpha)$	$2g(\alpha)$	0	0
$f^{\prime\prime\prime}(\alpha)$	$3g''(\alpha)$	$6g'(\alpha)$	$6g(\alpha)$	0.

Thus G has a simple root at α , and otherwise exhibits benavior quite similar to that of F.

When G is used in the secant method,

(13)
$$x_2 = x_1 - (x_0 - x_1) \frac{G_1}{G_0 - G_1},$$

it produces superlinear convergence. The asymptotic error equation for this, the proposed method, is

(14)
$$\varepsilon_2 \cong \left\{ \frac{1}{2} \frac{G''(\alpha)}{G'(\alpha)} \right\} \varepsilon_0 \varepsilon_1 + \left\{ \frac{1}{6} \frac{G'''(\alpha)}{G'(\alpha)} - \left(\frac{1}{2} \frac{G''(\alpha)}{G'(\alpha)} \right)^2 \right\} \varepsilon_0 \varepsilon_1 \left(\varepsilon_0 + \varepsilon_1 \right) \,.$$

It is well known that for this procedure the order of convergence is $p = (1 + 5^{\frac{1}{2}})/2$ = 1.618. Since the two function evaluations $f(x_1)$ and $f(x_1 - f(x_1))$ are required each step, it follows that the efficiency index is $(1.618)^{\frac{1}{2}} = 1.272$.

Woźniakowski [8] has shown that secant iteration such as that proposed is stable provided only that G be computed by a well-behaved algorithm.* For example, a polynomial f used in forming G should be evaluated by Horner's rule rather than term by term. Furthermore one must remember that in order to calculate a multiple root accurately it is necessary to use multiprecision arithmetic.

3. Finding the multiplicity m.

From (11) and (6) we can see that for small ε_1

(15)
$$G_1 \doteq F_1 = \frac{\varepsilon_1 g(x_1)}{mg(x_1) + \varepsilon_1 g'(x_1)} \doteq \frac{\varepsilon_1}{m}$$

Similarly we know that $G_2 \doteq \varepsilon_2/m$. Furthermore $\varepsilon_2 - \varepsilon_1 = x_2 - x_1$. Consequently when nearing the root α we can estimate its multiplicity by computing

(16)
$$m \doteq \frac{x_2 - x_1}{G_2 - G_1}$$

Thus *m* is approximately the reciprocal of the divided difference of *G* for successive iterates x_1 and x_2 . It may be computed and displayed at each step along with the current iterate.

^{*} Thanks are due to the referee for raising the question of the method's stability.

A SECANT METHOD FOR MULTIPLE ROOTS

4. Examples.

Results from three examples computed (in quadruple precision) on an IBM 370 are shown in Tables 1-3. In each case the predicted error ε_2 as calculated from (14) is seen to be a good approximation to the actual error $x - \alpha$, and the estimated multiplicity *m* from (16) approaches its actual value. No careful convergence criteria were either discussed in the analysis or used in the examples. The secant method was also applied to *f* directly for the examples; some 47, 69, and 66 steps, respectively, were required to obtain final accuracy comparable to that of the proposed method.

REFERENCES

- 1. J. F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall, Englewood Cliffs, N.J. (1964).
- 2. L. B. Rall, Convergence of the Newton process to multiple solutions, Numerische Mathematik 9 (1966), 23-37.
- 3. T. O. Espelid, On the behavior of the secant method near a multiple root, BIT 11 (1972), 112-115.
- 4. N. Anderson and Å. Björck, A new high order method of regula falsi type for computing a root of an equation, BIT 13 (1975), 253–264.
- 5. G. W. Stewart, The convergence of multipoint iterations to multiple zeros, SIAM J. Numer. Anal. 11 (1974), 1105–1120.
- 6. H. Esser, Eine stets quadratisch konvergente Modifikation des Steffensen-Verfahrens, Computing 14 (1975), 367–369.
- 7. D. Woodhouse, A note on the secant method, BIT 15 (1975), 323-327.
- 8. H. Woźniakowski, Numerical stability for solving nonlinear equations, Numerische Mathematik 27 (1977), 373–390.

					ז מר	T AULA 1.					
	f	56	ш	ø	$g(\alpha)$	g' (a)	g'' (a)	$g'(\alpha)$ $g''(\alpha)$ $G'(\alpha)$ $G''(\alpha)$	G'' (a)	$G'''(\alpha)$	
	$(x-1)^2 \tan (\pi x/4) \tan (\pi x/4) 2$ 1 1) $\tan (\pi x/4)$	5	1		$\pi/2$	$\pi^2/4$	1/2	$-\pi/4$	$3\pi^2/6 + 3\pi/2 + 3/4$	+ 3/4
		ϵ_{n+2}	 	- π/4 +	$-1/2)\varepsilon_n\varepsilon_n$	1+1+3n	$t/4\varepsilon_n\varepsilon_{n+1}$	$\varepsilon_{n+2} \cong (-\pi/4 + 1/2)\varepsilon_n \varepsilon_{n+1} + 3\pi/4\varepsilon_n \varepsilon_{n+1}(\varepsilon_n + \varepsilon_{n+1})$	(
2	x	, f			9		×	х — x		в	m
0	9.	.0815241	,	359569	569		4				
1	Ľ	.0551521		205290	290		ان				
7	.833064	.0213742		093	0934212		166936	99	2:	232168	1.1894645
e	.9441851	.00285348	,	028	.0285632		0558149	49	Ю. —	.0693915	1.7132998
4	.99312248	.0000467920		003	.00344590		00687752	1752)0. –	00754945	1.9483516
5	.999836316	.267857(-7)		818	.818460(-4)	•	000163684	3684)0.–	.000166258	1.9957541
9	.999999660145	.115501(-12)		169	.169928(-6)	(33985	339855(-6)	32	.339961(-6)	1.9999062
٢	99999999984.	.252743(-21)		794	.794895(-11)	(1)	15897	.158979(-10)	1:	.158979(-10)	1.9999998

Table 1.

				W			.74012233	1.4756629	2.2312244	2.8263022	2.9815029	2.9992887	2:9999959
	$G''(\alpha) G'''(\alpha)$	38/9		3			-3.71250	-1.35268	273133	0388973	00152117	00000829992	194339(-8)
	G''(a)	-1/9	(I	I	I	I	'	
	$g^{\prime\prime}(\alpha) G^{\prime}(\alpha)$	1/3	$\varepsilon_{n+2} \cong -1/6\varepsilon_n \varepsilon_{n+1} + 25/12\varepsilon_n \varepsilon_{n+1}(\varepsilon_n + \varepsilon_{n+1})$	$x - \alpha$			0577	5164	96680	0265526	00139000	00000824464	194335(-8)
i	g'' (x)	0	$12\varepsilon_n\varepsilon_{n+1}$		-1.0	6.–	490577	305164	120899	020	00	000	192
	g' (a)		+1+25/						10)2	143	14822	(6-
	$g(\alpha)$	2	$-1/6\varepsilon_n\varepsilon_n$	0	-1.0	803700	250516	.124869	0422846	.00890302	.000463443	.00000274822	.647783(-9)
	8	7	- IIS		1	I	Ι	Ι	Ι	I	ľ	ľ	Ť
	ш	з	ϵ_{n+2}							9	8	14)	52)
	8	×					0	46	062	6944	1(-	$^{+(-)}$	5(-
	f	$x(x-2)^{3}$		Ĺ	-1.0	8019	178210	0481646	00332062	0000369443	536751(-8)	112084(-14)	146785(-25)
				x	1.0	1.1	1.509423	1.694836	1.879101	1.9734474	1.99861000	1.99999175536	1.99999999806
				u	0		7	ŝ	4	5	9	7	∞

Table 2.

327

	£		g	ш	8	$g(\alpha)$	g' (a)	g''(a)	$G'(\alpha)$	$m \propto g(\alpha) g'(\alpha) g''(\alpha) G'(\alpha) G''(\alpha) G'''(\alpha)$	<i>G'''</i> (<i>a</i>)
	$(x-2)^4/((x-1)^4)^{-1}$	(1) ² + 1) ((1)	$(x-2)^4/((x-1)^2+1)$ $((x-1)^2+1)^{-1}$ 4 2 $1/2$	4	2	1/2	-1/2	1/2	1/4	1/8	3/32
				ε_{n+2}	₹ 1	$\varepsilon_{n+2} \cong 1/4\varepsilon_n \varepsilon_{n+1}$					
u	x	f		0			x-a			3	w
0	3.0	2	.386	386861			1.0				
٦	2.9	.142321	.328	328118			6.				
7	2.341439	.00485487		6965			.341439		.225		2.3929309
e	2.114837	.0000775386		0295811			.114837		.076	0768237	3.4800082
4	2.0118941	.988848(-8)		.00298239			.0118941		600.	80241	3.8702061
ŝ	2.000351611	.763957(-14)	Ų.	000879106	8		.000351611	11	000.	000341469	3.9877511
9	2.00000104590	.598310(-24)	. 3	261474(-6)	6		.104590(-5)	- 5)	.104	(04552(-5))	3.9996473

ARGONNE NATIONAL LABORATORY 9700 SOUTH CASS AVENUE ARGONNE, ILLINOIS 60439 U.S.A.

Table 3.

328