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A SECANT METHOD FOR MULTIPLE ROOTS

RICHARD F. KING*

Abstract.

A superlinear procedure for finding a multiple root is presented. In it the secant method
is applied to the given function divided by a divided difference whose increment shrinks
toward zero as the root is approached. Two function evaluations per step are required, but
no derivatives need be calculated.
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1. Introduction.

We seek a method of secant type for finding a real, multiple root o of the
nonlinear equation f(x)=0. But direct application of the secant method to f,
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yields a procedure whose convergence for a root of multiplicity m > 1 apparently is
linear at best (see Espelid [3], Stewart [5], and Woodhouse [7]). That is, for given
initial values x, and x,, the order of convergence pis 1 in
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for errors g =x;—o. Stewart [5] has computed K,, for various m>1 as the posi-
tive root of K"+ K™ 1 —~1=0.

Since it is well known that the function F=f/f" has a simple root at o (see
Traub [1], p. 235, for example), we can avoid the difficulty of (slow) linear
convergence by applying (1) to F instead of to f. Using F, however, requires that a
derivative as well as a function value be calculated each step; moreover f” is
frequently more complicated than f.

The function F may also be used in Newton’s method,
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where here and henceforth we suppress n in the subscripts. Since F has a simple
root at a, the process converges quadratically (p=2), whereas fitself in Newton’s
method yields linear convergence with K,, = (m—1)/m (see Rall [2]). The price of
gaining quadratic convergence is having to calculate not only fand f’ but also /.

Inspired by a procedure due to Steffensen, Esser [6] has recently proposed that
the derivatives of fin (3) be replaced by divided differences. The increment (—f)
for these differences is not constant, however, but shrinks as the root is
approached. Such a scheme is a natural way of defining differences with the
desired derivative properties. Esser’s method indeed is quadratic, calls for three
function evaluations per step, and provides the multiplicity m as well as the root a.

Its efficiency index (see Traub [1], p. 263) is 2 =1.260.

2. A method for multiple roots.

In the same spirit we propose for multiple roots that the secant method be used
not with the function F=f/f" but rather with
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Here again f” has been replaced by a divided difference of f, with increment (—f).
It will be instructive to compare G with F, to see why both yield superlinear
convergence when used as secant method functions.

First of all we want to find the value of F and its first three derivatives at a.
Note that if the function f has a root of multiplicity m at ¢, then it may be written
as

5) J) = (x—0)"g(x), gla) = 0.

Furthermore since the secant algorithm (1) gives x, as a linear function of x, and
x,, it follows that a translation of f by (x —«) enables us without loss of generality
to take a=0. Consequently F(x) may be expressed in terms of g as

xg(x)
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x=0
ie., o is a root of F. Differentiating F we see that
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so that in fact « is a simple root of F..Further differentiation shows that
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and that
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m
It is known (for example, see Anderson and Bjorck [4], p. 258} that the
asymptotic error equation for the secant method with a function F having a
simple root at « is
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where the coefficients may be written in terms of g and its derivatives at o by
means of (7), (8), and (9). This error equation shows that for any multiplicity m the
secant method (1) using F is superlinear. The asymptotic convergence rate, in fact,
is 1.618.

But what about the function G? We can expand f{x—f(x)) in a Taylor series
about x to get, for small F,
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Evaluating at =0 the results of some very tedious differentiations, we conclude
that G and its derivatives at any o can be written as
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Furthermore the derivatives of fin (12) are given in terms of g and its derivatives
at the root o, and for various values of multiplicity m, as entries in the following
table:
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m=1 m=2 m=3 m=4
(@) g 0 0 0
@) 28@  2g) 0 Y
[ 3g7(w  6g'(0)  6g(®) 0.

Thus G has a simple root at «, and otherwise exhibits benavior quite similar to
that of F.
When G is used in the secant method,

G,

(13) Xy = x1—(xo"x1)~(';::6—1,

it produces superlinear convergence. The asymptotic error equation for this, the
proposed method, is

16" 16" 16" 2
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It is well known that for this procedure the order of convergence is p= (1+5%)/2
=1.618. Since the two function evaluations f(x;) and f(x; —f(x,)) are required
each step, it follows that the efficiency index is (1.618)*=1.272.

Wozniakowski [8] has shown that secant iteration such as that proposed is
stable provided only that G be computed by a well-behaved algorithm.* For
example, a polynomial f used in forming G should be evaluated by Horner’s rule
rather than term by term. Furthermore one must remember that in order to
calculate a multiple root accurately it is necessary to use multiprecision
arithmetic.

3. Finding the multiplicity m.
From (11) and (6) we can see that for small ¢

(15) Gi_;_F1=,__81__g(§Q_;8_{,
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Similarly we know that G,=¢,/m. Furthermore ¢, —¢; =x,—Xx,;. Consequently
when nearing the root o we can estimate its multiplicity by computing

X=X
16 =2 ot
(16) m G.—G,

Thus m is approximately the reciprocal of the divided difference of G for successive

iterates x; and x,. It may be computed and displayed at each step along with the
current iterate.

* Thanks are due to the referee for raising the question of the method’s stability.
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4. Examples.

Results from three examples computed (in quadruple precision) on an IBM 370
are shown in Tables 1-3. In each case the predicted error ¢, as calculated from
{14) is scen to be a good approximation to the actual error x—a, and the
estimated multiplicity m from (16) approaches its actual value. No careful
convergence criteria were either discussed in the analysis or used in the examples.
The secant method was also applied to f directly for the examples; some 47, 69,
and 66 steps, respectively, were required to obtain final accuracy comparable to
that of the proposed method.
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