MTH 351 Spring 2007 - Lab 3

Due: Before 5pm May 11

To see how good and bad various interpolation methods can be, use Matlab's interpolation routines on data generated from Runge's function:

$$
f(x)=\frac{1}{1+x^{2}}
$$

In Matlab, do the following:

1. Problem setup:

Generate $N+1=11$ equally-spaced nodes x_{i} in the interval $[-5,5]$

$$
\begin{aligned}
& N=10 ; \\
& x=\text { linspace }(-5,5, N+1) ; \% \text { to see values, omit the ; }
\end{aligned}
$$

and then evaluate $f(x)$ at these nodes

$$
\begin{aligned}
& \mathrm{f}=\operatorname{inline}\left({ }^{\prime} 1 . /(1+\mathrm{x} . * \mathrm{x})^{\prime}, \mathrm{x}^{\prime}\right) ; \\
& \mathrm{y}=\mathrm{f}(\mathrm{x}) ;
\end{aligned}
$$

The $N+1$ points $\left(x_{i}, y_{i}\right)$ are the data points to be interpolated by various methods. Plot them to see where they are

$$
\begin{aligned}
& \text { plot }\left(x, y, \prime^{\prime}\right) \\
& \text { title('N+1 }=11 \text { equally-spaced data points') }
\end{aligned}
$$

Also generate lots of points t_{i} at which to evaluate f, and the interpolants, for plotting

$$
t=[-5: .1: 5] ;
$$

Evaluate f at these t_{i} 's and plot $f(t)$ in a new figure window

$$
\begin{aligned}
& \text { figure; } \\
& \text { plot(t,f(t),'-') } \\
& \text { title('Runge function') }
\end{aligned}
$$

2. Nth degree interpolating polynomial:

Use Matlab's polyfit to construct (the coefficients of) the Nth degree interpolating polynomial

$$
\text { PN }=\text { polyfit }(x, y, N) ;
$$

Now this can be evaluated anywhere in the interval [-5,5], e.g., at the t_{i} 's

$$
\mathrm{v}=\operatorname{polyval}(\mathrm{PN}, \mathrm{t}) ;
$$

Find the inf-norm error $\|f(t)-v\|_{\infty}$

$$
e r r=\operatorname{norm}(f(t)-P N(t), i n f)
$$

and plot both $f(t)$ and $P N(t)$ on the same plot as the data points

```
figure;
plot(x,y,'o',t,f(t),'-',t,v,'--')
title(sprintf('f(t) and P_{10}(t), err=%g',err))
```

3. Interpolation at Chebychev nodes:

Generate $N+1=11$ Chebychev nodes

```
    K = N+1;
    a=-5;
    b=5;
    for i=1:K
    xcheb(i)=(a+b)/2 + (b-a)/2 * cos( (i-.5)*pi/K );
    end
    ycheb = f(xcheb);
```

Follow the steps in 2. to produce the Nth degree interpolating polynomial PNcheb based on the Chebychev nodes, its values vcheb at the t_{i} 's, and the error $\|f(t)-P N c h e b(t)\|_{\infty}$, and plot both $f(t)$ and $P N c h e b(t)$ on the same plot as the Chebychev data. Compare the error and the plot with those from 2. Comment on why one works better than the other.
4. Piecewise linear interpolation:

Use Matlab's interp1 to construct the piecewise linear interpolant evaluated at the t_{i} 's

$$
\text { vlin }=\text { interp1(x,y,t,'linear'); }
$$

Repeat the steps of 2 . to compute the error and plot. Compare error and plot with those from the previous examples.
5. Piecewise cubic interpolation:

Use Matlab's interp1 to construct the piecewise cubic interpolant evaluated at the t_{i} 's

$$
\text { vcub }=\text { interp1 }(x, y, t, ' c u b i c ') ;
$$

Repeat the steps of 2 . Compare errors and plots.
6. Cubic spline interpolation:

Use Matlab's interp1 to construct the cubic spline interpolant evaluated at the t_{i} 's
vspl = interp1(x,y,t,'spline');

Repeat the steps of 2. Compare errors and plots.
7. To see that the error gets worse for equally-spaced nodes but not for Chebychev nodes (for this $f(x)$ at least), repeat 1., 2. and 3 . with $N=20$.

Turn in a hard copy of the results of the above commands, including plots, and your answers to all of the questions for each problem. Include a printout of the script which runs the above commands, in addition to uploading the script to Blackboard.

