MTH 351 Fall 2006 – HW 5, Prob 2.

Due: Before class November 29

Consider the $n \times n$ matrix A from Section 6.2, Problem 21 given by:

$$A = \begin{bmatrix} 1 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & -1 & 2 & -1 \\ 0 & \cdots & 0 & -1 & 2 \end{bmatrix}$$

Note that this matrix is the result of discretizing the following two-point boundary value problem (See Section 8.8):

$$y''(x) = f(x),$$
 $y'(a) = 0,$ $y(b) = 0,$ $a \le x \le b.$

- 1. Compute ("by hand", i.e., show each step) the LU factorization for A using
 - (a) n = 2
 - (b) n = 3
- 2. Find the pattern in the above factorizations, what do you suppose is the LU factorization for arbitrary n?
- 3. Verify that the i, i entry of LU is $A_{i,i} = 2$.
- 4. Verify that the i, i + 1 entry of LU is $A_{i,i+1} = -1$. (Since A is symmetric, we do not need to verify $A_{i,i-1}$.)
- 5. Comment on the number of floating point operations (multiplications and divisions only.. assume, rather crudely, that additions and subtractions are free!) required to solve Ax = b for this particular A
 - (a) if given

$$A^{-1} = \begin{bmatrix} n & n-1 & n-2 & n-3 & \cdots & 1\\ n-1 & n-1 & n-2 & n-3 & \cdots & 1\\ n-2 & n-2 & n-2 & n-3 & \cdots & 1\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots\\ 1 & 1 & 1 & 1 & \cdots & 1 \end{bmatrix}$$

(b) if given LU from 2.