MTH 351 - Lab 5

1. Approximate each of the following integrals using the composite trapezoidal rule:
i.

$$
\int_{0}^{2} e^{-x^{2}} d x
$$

ii.

$$
\int_{0}^{4} \frac{1}{1+x^{2}} d x
$$

iii.

$$
\int_{0}^{2 \pi} \frac{1}{2+\sin (x)} d x
$$

iv.

$$
\int_{0}^{1} \sqrt{x} d x
$$

(a) For each integral, create a table of values $T_{n}(f)$ for $n=2,4,8, \ldots, 512$. Also compute the difference between successive iterates $T_{2 n}(f)-T_{n}(f)$, and the ratio between successive differences

$$
\frac{T_{2 n}(f)-T_{n}(f)}{T_{4 n}(f)-T_{2 n}(f)}
$$

Your table should look something like:

n	Approximation	Difference	Ratio	

Note: In order to see all significant figures, it is helpful to use something similar to the following when you output values in Matlab:

```
a=0;
b=2;
n0=2;
f='exp(-x^2)';
[inT,diT,raT]=trapezoidal(a,b,n0,f);
fprintf('n \tIntegral \tError \t\tRatio\n')
for i=1:length(inT),
    fprintf(%%d\t%0.12f\t%%.5e\t%g\n',n0*2^(i-1),inT(i),diT(i),raT(i))
end
```

(b) Comment if the trapezoidal rule performed worse or better than expected for each integral. Explain what may be the cause.
2. Repeat 1 using composite Simpson's rule. Compare to trapezoidal with respect to accuracy and efficiency.
Note: In order to see all significant figures, it is helpful to use something similar to the following when you output values in Matlab:

```
[inS,diS,raS]=simpson(a,b,n0,f);
fprintf('n \tIntegral \tError \t\tRatio\n')
for i=1:length(inS),
    fprintf(%%d\t%0.12f\t%0.5e\t%%\n',n0*2^(i-1),inS(i),diS(i),raS(i))
end
```

3. Regarding integral (i.), the asymptotic error formula for Simpson's rule estimates that the number of subdivisions required to achieve an accuracy of $\epsilon=10^{-10}$ is at least $n=160$. For integral (ii.) $n=396$ is required for an accuracy of $\epsilon=10^{-12}$. Comment on whether your computational results agree or disagree with the asymtotic error formula. (See 5.2 Problem 6 in the text.)
4. Repeat 1 using Gaussian quadrature rule. Compare to trapezoidal and Simpson's with respect to accuracy and efficiency.
Note: In order to see all significant figures, it is helpful to use something similar to the following when you output values in Matlab:
```
[inG,diG,raG]=gausstable(a,b,n0,f);
fprintf('n \tIntegral \tError \t\tRatio\n')
for i=1:length(inG),
    fprintf('%d\t%0.12f\t%0.5e\t%g\n',n0*2^(i-1),inG(i),diG(i),raG(i)))
end
```

5. Optional: Improve $T_{512}(f)$ for each integral above by using the corrected trapezoidal rule (if it applies). Compare this approximation $\left(C T_{512}(f)\right)$ to the Simpson's rule approximation $\left(S_{512}(f)\right)$ with respect to accuracy and efficiency.
6. Optional: Improve $T_{512}(f)$ for each integral above by using the Richardson's extrapolation formula. Compare this approximation $\left(R_{512}(f)\right)$ to the Simpson's rule approximation $\left(S_{512}(f)\right)$ with respect to accuracy and efficiency.
