BINARY INTEGERS

A binary integer x is a finite sequence of the digits 0 and 1 , which we write symbolically as

$$
x=\left(a_{m} a_{m-1} \cdots a_{2} a_{1} a_{0}\right)_{2}
$$

where I insert the parentheses with subscript ()$_{2}$ in order to make clear that the number is binary. The above has the decimal equivalent

$$
x=a_{m} 2^{m}+a_{m-1} 2^{m-1}+\cdots+a_{1} 2^{1}+a_{0}
$$

For example, the binary integer $x=(110101)_{2}$ has the decimal value

$$
x=2^{5}+2^{4}+2^{2}+2^{0}=53
$$

The binary integer $x=(111 \cdots 1)_{2}$ with m ones has the decimal value

$$
x=2^{m-1}+\cdots+2^{1}+1=2^{m}-1
$$

DECIMAL TO BINARY INTEGER CONVERSION

Given a decimal integer x we write

$$
\begin{aligned}
x & =\left(a_{m} a_{m-1} \cdots a_{2} a_{1} a_{0}\right)_{2} \\
& =a_{m} 2^{m}+a_{m-1} 2^{m-1}+\cdots+a_{1} 2^{1}+a_{0}
\end{aligned}
$$

Divide x by 2 , calling the quotient x_{1}. The remainder is a_{0}, and

$$
x_{1}=a_{m} 2^{m-1}+a_{m-1} 2^{m-2}+\cdots+a_{1} 2^{0}
$$

Continue the process. Divide x_{1} by 2 , calling the quotient x_{2}. The remainder is a_{1}, and

$$
x_{2}=a_{m} 2^{m-2}+a_{m-1} 2^{m-3}+\cdots+a_{2} 2^{0}
$$

After a finite number of such steps, we will obtain all of the coefficients a_{i}, and the final quotient will be zero.

Try this with a few decimal integers.

EXAMPLE

The following shortened form of the above method is convenient for hand computation. Convert (11) 10 to binary.

$$
\begin{array}{lllll}
\lfloor 2 \sqrt{ } 11\rfloor=5 & & a_{0}=1 \\
\lfloor & =x_{1} & & a_{1}=1 \\
\lfloor 2 \sqrt{ } 5\rfloor & =2 & =x_{2} \\
& \lfloor 2 \sqrt{ } 2\rfloor=1 & =x_{3} & a_{2}=0 \\
& \lfloor 2 \sqrt{ } 1\rfloor=0 & =x_{4} & a_{3}=1
\end{array}
$$

In this, the notation $\lfloor b\rfloor$ denotes the largest integer $\leq b$, and the notation $2 \sqrt{ } n$ denotes the quotient resulting from dividing 2 into n. From the above calculation, $(11)_{10}=(1011)_{2}$.

BINARY FRACTIONS

A binary fraction x is a sequence (possibly infinite) of the digits 0 and 1 :

$$
\begin{aligned}
x & =\left(. a_{1} a_{2} a_{3} \cdots a_{m} \cdots\right)_{2} \\
& =a_{1} 2^{-1}+a_{2} 2^{-2}+a_{3} 2^{-3}+\cdots
\end{aligned}
$$

For example, $x=(.1101)_{2}$ has the decimal value

$$
\begin{aligned}
x & =2^{-1}+2^{-2}+2^{-4} \\
& =.5+.25+.0625=0.8125
\end{aligned}
$$

Recall the formula for the geometric series

$$
\sum_{i=0}^{n} r^{i}=\frac{1-r^{n+1}}{1-r}, \quad r \neq 1
$$

Letting $n \rightarrow \infty$ with $|r|<1$, we obtain the formula

$$
\sum_{i=0}^{\infty} r^{i}=\frac{1}{1-r}, \quad|r|<1
$$

Using this,
$(.0101010101010 \cdots)_{2}=2^{-2}+2^{-4}+2^{-6}+\cdots$

$$
=2^{-2}\left(1+2^{-2}+2^{-4}+\cdots\right)
$$

which sums to the fraction $1 / 3$.

Also,

$$
\begin{aligned}
& (.11001100110011 \cdots)_{2} \\
& =2^{-1}+2^{-2}+2^{-5}+2^{-6}+\cdots
\end{aligned}
$$

and this sums to the decimal fraction $0.8=\frac{8}{10}$.

DECIMAL TO BINARY FRACTION CONVERSION

In

$$
\begin{aligned}
x_{1} & =\left(. a_{1} a_{2} a_{3} \cdots a_{m} \cdots\right)_{2} \\
& =a_{1} 2^{-1}+a_{2} 2^{-2}+a_{3} 2^{-3}+\cdots
\end{aligned}
$$

we multiply by 2 . The integer part will be a_{1}; and after it is removed we have the binary fraction

$$
\begin{aligned}
x_{2} & =\left(a_{2} a_{3} \cdots a_{m} \cdots\right)_{2} \\
& =a_{2} 2^{-1}+a_{3} 2^{-2}+a_{4} 2^{-3}+\cdots
\end{aligned}
$$

Again multiply by 2 , obtaining a_{2} as the integer part of $2 x_{2}$. After removing a_{2}, let x_{3} denote the remaining number. Continue this process as far as needed.

For example, with $x=\frac{1}{5}$, we have

$$
\begin{gathered}
x_{1}=.2 ; \quad 2 x_{1}=.4 ; \quad x_{2}=.4 \text { and } a_{1}=0 \\
2 x_{2}=.8 ; \quad x_{3}=.8 \text { and } a_{2}=0 \\
2 x_{3}=1.6 ; \quad x_{4}=.6 \text { and } a_{2}=1
\end{gathered}
$$

Continue this to get the pattern

$$
(.2)_{10}=(.00110011001100 \cdots)_{2}
$$

ADDITION TABLE

+	1	10	11	100	101
1	10	11	100	101	110
10	11	100	101	110	111
11	100	101	110	111	1000
100	101	110	111	1000	1001
101	110	111	1000	1001	1010

MULTIPLICATION TABLE

\times	1	10	11	100	101
1	1	10	11	100	101
10	10	100	110	1000	1010
11	11	110	1001	1100	1111
100	100	1000	1100	10000	10100
101	101	1010	1111	10100	11001

