MTH 351 Winter 2009 - HW for Section 6.4

Due: 5pm Mar 11

Consider the $n \times n$ matrix A from Section 6.2, Problem 21 given by:

$$
A=\left[\begin{array}{ccccc}
1 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & -1 & 2 & -1 \\
0 & \cdots & 0 & -1 & 2
\end{array}\right]
$$

Note that this matrix is the result of discretizing the following two-point boundary value problem (see Section 8.8) using finite difference derivatives (see Section 5.4):

$$
y^{\prime \prime}(x)=f(x), \quad y^{\prime}(a)=0, \quad y(b)=0, \quad a \leq x \leq b
$$

1. Compute ("by hand", i.e., show each step) the LU factorization for A using
(a) $n=2$
(b) $n=3$
2. Find the pattern in the above factorizations, what do you suppose is the LU factorization for arbitrary n ?
3. Verify that the i, i entry of the product $L U$ is $A_{i, i}=2$.
4. Verify that the $i, i+1$ entry of the product $L U$ is $A_{i, i+1}=-1$. (Since A is symmetric, we do not need to verify $A_{i, i-1}$.)
5. Comment on the number of floating point operations (multiplications and divisions only.. assume, rather crudely, that additions and subtractions are free!) required to solve $A x=b$ for this particular A
(a) if given

$$
A^{-1}=\left[\begin{array}{cccccc}
n & n-1 & n-2 & n-3 & \cdots & 1 \\
n-1 & n-1 & n-2 & n-3 & \cdots & 1 \\
n-2 & n-2 & n-2 & n-3 & \cdots & 1 \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
1 & 1 & 1 & 1 & \cdots & 1
\end{array}\right]
$$

(b) if given $L U$ from 2 .

