1.

MTH 351 — Lab 3

Consider the function f(z) = 2° — 2* + 2 — 1. Use the Bisection method to
approximate the root to within an error tolerance of 10~¢ with the following initial
intervals: [0, 3],[0.5,2.0],[0.9,1.2]. In doing so, make a table of values which includes
the approximation, error (what is the true root anyway?), and number of iterations
(use a maximum of 100 iterations). Then answer the following questions:

(a) Why does the second interval need exactly one fewer iteration?

(b) Is there any advantage to having the root in the center of the interval, or is it
better to instead be nearer to an endpoint?

Consider the function f(z) = 2° — 2 + x — 1. Use Newton’s method to approximate

the root to within an error tolerance of 107% with the following initial iterates:
—100,0,.9,0.99,1.1,1.4,1000000. In doing so, make a table of values which includes
the approximation, error, and number of iterations. Then answer the following
questions:

(a) How does Newton compare to Bisection for efficiency when the initial iterate is
close to the true root?

(b) Why are the errors less than 107!2 if we only asked for 10767

(¢) Without running Bisection, how many iterations would it take if the interval
were [—1000000, 1000000] and € = 1.3 x 107127 Compare to Newton’s result
from xo = 1000000.

Consider the function f(x) = 2% — 2% + z — 1. Use the Secant method to approximate

the root to within an error tolerance of 107 with the following initial iterates:

[zo, 1] = [0, 3],[0.5,2.0], 0.9, 1.2]. In doing so, make a table of values which includes
the approximation, error, and number of iterations. Then answer the following
questions:

(a) How does this method compare to Newton and Bisection for efficiency when the
initial iterate is close to the true root?

(b) Does the distance between the initial iterates affect the number of iterations
required as directly as does the size of the initial interval in Bisection?

Explain the output of roots(poly(1:21)). Hint: Recall Problem 11 from Section
2.3 of the book.



5. On your own (do not turn in), repeat 1-3 above for
flx) = 2° — 32* + 42% — 42% + 3z — 1, but answer the following questions instead:

e Bisection method

(a) Why are the number of iterations the same as for the first function?

(b) Why is the actual error not less than the theorectically guaranteed error
bound?!

(¢) See if writing the function a different way helps, e.g., reverse order, nested,
factored (although, if we knew the factorization in advance it wouldn’t be
much of a root finding problem!).

o Newton’s method

(a) How does Newton compare to Bisection for efficiency of solving this
problem?

(b) Why might Newton be having a problem solving for the root of this
particular function and what could you do to fix the problem?

o Secant method

(a) How does this method compare to Newton and Bisection for efficiency when
the initial iterate is close to the true root?

(b) Assuming you are only using Secant method to find the roots of a function
because you do not have a way to compute derivatives (and therefore
cannot use Newton’s method), would there be any way to fix the type of
problem you are observing here?

6. On your own (do not turn in), solve for the roots of the above two functions with
Matlab’s fzero (see help fzero for a description and type fzero to see the source).
The algorithm essentially does something similar to what we discussed in class in
that instead of bisecting an interval, it divides it in an intelligent way based on f(a)
and f(b) (actually it uses a “combination of bisection, secant, and inverse quadratic
interpolation methods”). To which method above are the results the most similar?
Does it do as well as Bisection, or Secant? Hint: to set tol and maz_its use:
options=optimset (’MaxIter’,max_its,’TolX’,tol); to call the function use:

[rootiF,fval,flag,output]=fzero(fcn,interval,options);
itiF=output.iterations;



