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The Birth of Period 3, Revisited

JOHN BECHHOEFER

Simon Fraser University
Burnaby, British Columbia V5A 156, Canada

Introduction Over the last twenty years, the logistic map,
xn+l=rxn(1_xn ’ (1)

has served as an exemplar of nonlinear dynamics [1, 2]. As May stressed some 20 years
ago [3], the patterns formed by iterates of the logistic map are simple to compute but
illustrate the complexities possible in nonlinear dynamics. The bifurcation of the
logistic map, which summarizes the long-time dynamics as a function of the control
parameter r in Equation 1, is one of the most commonly reproduced images of
dynamical systems. (See Ficure 1.) Also, using this map, Feigenbaum derived his
famous renormalization-group theory of scaling exponents. These results were soon
shown to apply to real experimental systems, such as fluid undergoing thermal
convection [2]. Given both the pedagogical value and the scientific importance of the
logistic map, exact analytic results concerning its solutions have been collected with
great care. One such result is that a period-3 orbit (or 3-cycle), the most prominent of
the “periodic windows” in Ficure 1, is born via a tangent bifurcation at the control-
parameter value r=1+ V8.

period-3
10 window

x 05 |

0.0 |

FIGURE 1
Bifurcation diagram of the logistic map. The 3-cycle is indicated on the figure.

A proof of this statement was recently given in these pages by Saha and Strogatz [1].
Their method, although straightforward, involves fairly complex algebra and a number
of intermediate steps, which led the latter author to wonder whether a simpler proof
might not exist. My purpose here is to give just such a proof. An independent (and
different!) proof is given in the next article. More precisely, I shall show that given
that a tangent bifurcation creates a period-3 cycle somewhere, that 3-cycle must be
created at r=1+ V8.
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The Proof We first introduce some notation. Let f(x) = rx(1 —x) so that Equation
1 becomes x,,; =f(x,). The second iterate of f, f(f(x)), will be denoted as f>(x),
and similarly for higher iterates. Thus, any point of a period-3 orbit p will satisfy
p =f3(p). In Ficure 2, we plot f3(x) for a value of r just larger than the onset value
for the 3-cycle, r.. Note that the function y =f(x) crosses the diagonal line (y = x)
eight times. Three crossings, denoted by filled circles, correspond to the stable 3-cycle
seen in the long-time dynamics. The nearby set of three crossings denoted by hollow
circles correspond to an unstable 3-cycle. If we lower the control parameter r to
r,=1+ V8, the stable and unstable 3-cycles will “collide” and have identical values
of x. Finally, the two squares denote values of x that are fixed points of the direct
map f(x) (and hence, of course, fixed points of f*(x)).
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FIGURE 2
Graph of f 3(x) for r=23.85. Filled circles, stable 3-cycles; hollow circles, unstable 3-cycle;
filled squares, fixed points of f.

As Saha and Strogatz point out, the condition for a tangent bifurcation may be
expressed by the tangency of y =f3(x) to the line y =x. The stability of an orbit is
given by the derivative of the map evaluated at any one of the points in the orbit [2].
The cycle just goes unstable (via a tangent bifurcation) when that derivative is 1. At a
tangent bifurcation, f 3 has slope 1 at each of the 3 points a,b, ¢ of the 3-cycle at
r=r,. Thus,

d(f°(x)) _ d(£2(x) d(f*(x)  d(f(x))
o d(fA(v) d(f(x))

_4dUf(x) | df(x) | d(f(x))
dx  li=c dx  l=p dx
=r3(1—2a)(1—2b)(1—2¢)
=1 (2)
Multiplying this condition out, we have
r3[1—2(a+b+c) +4(ab +bc + ac) — 8(abc)] =1. (3)

Thus, as noted by Saha and Strogatz, we need to find the combinations a=a +b +c,
B=ab +bc + ac, and y = abe, but not a, b, and ¢ individually.

x=a
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The other condition that r, must satisfy is that the third iterate of f(x) have a fixed
point at x =a, b, and c. This motivates us to define an auxiliary function g(x)=
£3(x) — x, which has roots at the fixed points of f(x). Ficure 2 thus shows that for r
just larger than r,, the function g(x) has eight real roots. That is in fact the maximum
possible, since g(x) is an eighth-order polynomial (f3(x) is the third iterate of a
quadratic function).

Now the important step: at the value r=r,, the values of x for the stable and
unstable 3-cycle collide at a, b, and c. The function g(x) thus has double roots at «,
b, and c. This accounts for six of the eight roots of g. Recalling that the two additional
fixed points of f are at x=0 and x=1—1/r, we know that g(x) must be of the
form

g(x) ax(x—1+1/r)[(x—a)(x=b)(x—c)]" (4)
Multiplying this out, we find
g(x) ax®—[2a+1-1/r]x"+[28+ e+ 2(1 - 1/r)a]x®
—[2y=2aB+2(1-1/r)B+(1—1/r)a?]x®+ ... (5)

Lower-order terms will not be needed. Notice that the combinations of @, b, and ¢
generated by the expansion of Equation 4 involve only the @, B and vy required for
our tangency condition (3).

On the other hand, we may compute g(x) directly by iterating the map f. This
gives

g(x)=r*x(1-x)[1-m(1 —x)][l —r*x(1-x)(1 —rx(l—x))] —x
= —r"[x® =42+ (6+2/r)xb— (4+6/r)x5+...]. (6)

Matching coefficients by starting with x® and descending in powers, we easily find «,

B, and y:
1

2a=3+ (7)
3.5 3
4B = 3 + 7 + E—I—E (8)
1,7 5 5
8'y=—'§+§7+'2—r—2-+§r—3. (9)
Putting these back in Equation 3 yields
r2—2r—7=0 (10)

whose sole positive root is r, =1+ V8, which is our result.

Conclusions Although our proof is simpler than the one given by Saha and
Strogatz, it does not readily lend itself to generalization. The result takes advantage of
the coincidence of the number of roots of g(x) with the number of points on cycles of
immediate interest. Were one to try to use the same method to find the birth of a
5-cycle, for example, one would be faced with a 32nd-order polynomial. But the stable
and unstable 5-cycles plus 2 fixed points account for only 12 of those roots. Nonethe-
less, for the 3-cycle problem, with suitable hints to get students started, the method
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outlined here should simplify greatly what had been a difficult homework problem for
a course in nonlinear dynamics.
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Period Three Trajectories of the Logistic Map

WILLIAM B. GORDON

Naval Research Laboratory
Code 5311
Washington, DC 20375

A recent Note in this Macazive [3] was concerned with locating the “tangent
bifurcation” to the logistic map

f(x) =rx(l—x). (1)

From graphical considerations, this problem amounts to finding the smallest value of
r € (0,4) for which the map f has a non-trivial 3-periodic orbit. In [3] this value is
shown to be r =r,, where

ri=1+2/2 = 3.828427124746. (2)

The purpose of this note is to show how the result (2) can be easily obtained by
exploiting the fact that every 3-periodic sequence {x(n)} can be written in the form

x(n)=,u,+Bw”+[_35", (3)

where w and B are constants, w is a complex cube root of unity, and the overbars
indicate complex conjugation. We shall also give an upper bound for the r-values that
support stable 3-periodic orbits, viz., r = ry, where

rp=1+y 7R R

I ( 1915 _ 5/201 )“ ", ( 1915 5201 )” 3]
3

~ 3.841499007543. (4)

A different proof of (2) is given in this current issue of the Macazine by Bechhoefer
[1]. We also note that (3) can be viewed as a discrete Fourier transform representation
of the 3-periodic orbit x(n); and that discrete Fourier transform techniques have
been used in the study of periodic orbits of the Hénon map [2].
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