The Birth of Period Three

Author(s): Partha Saha and Steven H. Strogatz

Source: Mathematics Magazine, Vol. 68, No. 1 (Feb., 1995), pp. 42-47
Published by: Mathematical Association of America

Stable URL: http://www.jstor.org/stable/2691376

Accessed: 10/05/2009 17:37

Y our use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=maa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to
Mathematics Magazine.

http://www.jstor.org


http://www.jstor.org/stable/2691376?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=maa

42 MATHEMATICS MAGAZINE

The Birth of Period Three

PARTHA SAHA

STEVEN H. STROGATZ
The Massachusetts Institute of Technology

Cambridge, MA 02139

1. The logistic map The logistic map is one of the most far-reaching examples in all
of mathematics [1-8]. It is given by the difference equation

xn+l=rxn(l_xn)’ (1)
where 0 <x, <1 and 0 <r < 4. In other words, given some starting number 0 <x, <
1, we generate a new number x, by the rule x, =rx,(1 —x,), and then repeat the
process to generate x5 from x,, and so on.

This equation has many virtues:

1) It is accessible. High school students can explore its patterns, as long as they
have access to a hand calculator or a small computer.

2) It is exemplary. This single example illustrates many of the fundamental notions
of nonlinear dynamics, such as equilibrium, stability, periodicity, chaos, bifurcations,
and fractals. May [6] was the first to stress the pedagogical value of (1).

3) It is living mathematics. Most of the important discoveries about the logistic map
are less than 20 years old. Certain aspects of (1) are still not understood rigorously,
and are being pursued by a few of the finest living mathematicians.

4) It is relevant to science. Predictions derived from the logistic map have been
verified in experiments on weakly turbulent fluids, oscillating chemical reactions,
nonlinear electronic circuits, and a variety of other systems [8].

2. Period-3 cycle and tangent bifurcation This paper is concerned with one aspect
of the logistic map, namely the value of r at which a period-3 cycle is created in a
tangent bifurcation. To explain what this mouthful means (and why anyone might
care!), we begin with an example. If we set r = 3.835 and then generate the sequence
{x,}, we find that x, eventually repeats every three iterations. This is shown
graphically in Ficure 1. For a typical choice of x,, the sequence bobbles around for a
few iterations and finally approaches a period-3 cycle, for which x,,;=x,.
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FIGURE 1
Time series of x,, for r = 3.835.
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Of course, the parameter value r=3.835 was cunningly chosen; for different
choices of r, one can see completely different long-term behavior of x,. To see the
behavior for all values of r at the same time, we plot the well-known “orbit diagram”
[2, 3] for the system (Ficugre 2). This picture should be regarded as a stack of vertical
lines, one above each r. For a given r, we start at some random x,, and then iterate
for 300 cycles or so, to allow the system to settle down to its eventual behavior. Now
that the transients have presumably decayed, we plot many points, say x5, ..., g0
above that r. Then we move on to the next r and repeat, eventually sweeping across
the whole picture.

Ficure 2 shows the most interesting part of the diagram, in the region 3.4 <r < 4.
At r = 3.4, the system exhibits a period-2 cycle, as indicated by the two branches. As
r increases, these branches split, yielding a period-4 cycle. This splitting is called a
“period-doubling bifurcation”. A cascade of further period-doublings occurs as r
increases, yielding period-8, period-16,..., until at r=3.57 the map becomes
“chaotic”. The orbit diagram seems to have degenerated into a featureless mass of
dots. Yet order sometimes re-emerges from chaos as we move to still larger r. This is
seen most dramatically in the period-3 window marked on Ficure 2. This region
includes the value r = 3.835 used earlier in Ficure 1.

period-3 window
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FIGURE 2
Orbit diagram for the logistic map. (From ref. [1], with permission.)

To understand how the period-3 cycle is born from chaos, we first need to
introduce some notation. Let f(x)=rx(1 —x) so that (1) becomes x,,,=f(x,).
Then x,,,=f(f(x,)) or more simply, x,,,=f2(x,). Similarly, x,,;=f3(x,). The
function f3(x) is the key to understanding the birth of the period-3 cycle. Any point
p in a period-3 cycle repeats every three iterates by definition, so such points satisfy
p =f>(p). Since f3(x) is an eighth-degree polynomial, this equation is not explicitly
solvable. But a graph provides sufficient insight. Ficure 3 plots f3(x) for r = 3.835.
Intersections between the graph and the diagonal line correspond to solutions of
f3(x) =x. There are eight solutions, six of interest to us and marked with dots, and
two imposters that are not genuine period-3; they are actually fixed points, i.e.
period-1 points for which f(x*) =x™*. The black dots in Ficure 3 correspond to the
stable period-3 cycle seen in Ficure 1, whereas the open dots correspond to an
unstable cycle that is not observed numerically.

Now suppose we decrease r into the chaotic regime—how does the graph change?
Ficure 4 shows that when r = 3.8, the six marked intersections have vanished.
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FIGURE 3
Graph of £3(x), for r = 3.835. Black dots, stable period-3 points; open dots, unstable period-3
points.
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FIGURE 4

Graph of f3(x) for r = 3.8. The period-3 cycle has disappeared.

Somewhere between r =3.8 and r = 3.835, the graph of f3(x) must have become
tangent to the diagonal. At this critical value of r, the period-3 cycles are created in a
tangent bifurcation.

Finally we come to the point of this paper. In several texts on chaos, it is
mentioned that the value of r at the tangent bifurcation is given exactly by
1+2V2 =3.8284... (e.g. [5, p. 169], [7, p. 289), [8, p. 83]. Given the beautiful
simplicity of this result, one of us (Strogatz) assumed it should be easy to derive, and
assigned it as a homework problem in a class on nonlinear dynamics. Of course, there
were grounds for suspicion: The result is always stated without proof in the refer-
ences we have seen. A few students in the class managed to derive the result with the
help of Maple, MACSYMA or Mathematica—but these solutions were unsatisfying.
One student (Saha) found an elementary solution that we present here. The solution
exploits the symmetries of the period-3 cycle, and illustrates the importance of finding
the right change of variables.

3. The period-3 conditions The period-3 conditions can be expressed in terms of
the three points x, y, z in the cycle:
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y=rx(l—x)=f(x), (2)
z=ry(1—y) =f(y) =f*(x), (3)
x=rz(l1—2) =f(2) =f*(y) =f*(x). (4)

We are also given that the onset of period-three is heralded by a tangent bifurcation.
Hence f* has slope 1 at each intersection with the diagonal. At x, this yields

d(f°(x)) _ d(f2(x))  d(f3(x))  d(f(x))
dx d(f3(x)) d(f(x))  dx

_d(f(2))  d(f(y)) . d(f(x))
dz dy dx

=r3(1-2z)(1-2y)(1-2x)
1. (5)

Equations (2)—(5) are four equations in four unknowns: x, y, z, 7. Can we solve for r
analytically? The answer is yes, though straightforward attempts (like collapsing the
four equations into two in x and r) quickly get out of hand. The system suggests
changes of variables that considerably simplify the process. We show how.

4. Two smaller problems Two subsequent changes of variables break the problem
into two easily manageable ones. We first notice that the right-hand sides of (2)—(4)
suggest a certain symmetry of the three variables x, y, and z about the value 1/2.
Accordingly, we define the variables p =x — %, g=y-— %, and t=z— % Another
change of variables, A =rp, B =rg, C =rt, renders (2)-(4) very simple:

r?_r 2 2 2

T g =A+tB=B"+C=C"+A. (6)
Equation (5) is even simpler:

8ABC = —1. (7

We thus have two smaller problems to solve. If we let R denote the common value of
the terms in (6), we get

R=A*+B=B*+C=C>+A, (8)

and a quadratic equation in r,
r? r
L -3-R (9)
Our strategy is to solve (7) and (8) for R, and then invoke (9) to obtain r.

If we now try to find the values for A, B, and C, we will run into an avoidable
complication. We must first realize that period three, by definition, implies three
distinct values of A, B, and C. Looking at (8), we notice that cyclic interchanges in A,
B, and C (ie. A—> B— C—> A) leave it unchanged. Thus if we solved for the
variables A, B, and C, we would be forced to find not only the different triplets of
numbers allowed but their cyclic reassignments as well! This clutter of solutions can
clearly be reduced by another change of variables. We realize that each triplet and all
its cyclic variations satisfy a single cubic equation of the form, (x — A)(x — BX(x — C)
= 0. The coefficients of the cubic equation are independent of the cyclic reassign-
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ments, and are thus the variables we should use. Expanding and collecting powers of
x of this cubic, we see that the coefficients are:

a=A+B+C, (10)
b=AB + BC + CA, (11)
¢=ABC. (12)

Our ultimate task is to solve an equation in one of the new variables; for reasons that
become clear later, we will choose a. Equality in any of the two variables among A,
B, and C would imply equality in all three, as can be seen from (8). This would result
in 8A% = —1, which (since a = 3A in this case) becomes 8a® + 27 =0 or

(2a+3)(4a®*—6a+9) =0. (13)

What happens when A = B = C? We get the period-1 condition mentioned in Section
2. Thus, when we finally derive an equation for a, we expect it to contain these
factors, corresponding to the period-1 “imposters” mentioned earlier. We will be
interested in any additional factors that may be present, as they will be related to the
genuine period-3 solutions.

5. Manipulations For much of this section, we will be manipulating algebraic
expressions. There is really nothing conceptual involved—just lots of careful alge-
braic maneuvers. The goal is to derive an equation in one of the variables among a, b,
and c.

We will need the following algebraic identities:

A%+ B2+ C?=a%-2b, (14)
A®+ B3+ C3=¢%-3ab + 3¢, (15)
(AB)® + (BC)® + (CA)* = b2 - 2ca. (16)

Adding the three expressions for R in (8) and using the identities (14)—(16), we
obtain

R=3(a®>+a—-2b). 17)

Now multiplying the first expression for R in (8) by A, the second by B, and the third
by C, adding and using (14)-(17), we get

2a®— Tab — a® + 9c + 3b = 0. (18)

Next we multiply the first expression for R by C, the second by A, and the third by
B, add and compare the resulting equation with what we had after a similar process
just before—this establishes

A%+ B3+ C*=A’C+B?A+ C?B=a*-3ab + 3c. (19)
To obtain the next equation, we combine two of the three expressions for R as
(A%2+B)(B%+C) =R?, etc. (20)

In a manner we have followed before, we add the above three equations, and then
use (14)—(17) and (19) to obtain:

a*—4a®+ 14ab + a®* + b® + 6ac — 4a®b — 3b — 18¢ = 0. (21)
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6. Solving for r Now it’s time to reap the fruits of our labors. Equation (7) gives us
¢ = —1/8 which, when put in (18), lets us solve for b:

16a® —84a%2—9

b=—%5a—0z

(22)
Substituting the above b in (21), we get the long-awaited equation in a:

15364° — 3072a° + 4608a* + 34564 — 10368a* + 15552a — 5832 = 0. (23)

The above factors into:

24(2a — 1)(2a + 3)(4a% — 6a + 9)° = 0. (24)

The factors 2a + 3 and 4a® — 6a + 9 were expected from (13). The only value of
interest for a is then 1/2 and thus, from (22), b = —9/4. Using (17), we finally
obtain R =7/4 and now going back to the quadratic equation in r (9), we see that
the only nonnegative root is r = 1 + 2v2, as desired.

7. Generalizations After this paper was completed, we discovered that similar
methods have been used by Hitzl and Zele [4] in their study of the Henon map, a
two-dimensional generalization of the logistic map. They find conditions for the
existence of periods 1-6. Their analysis could be used as a challenging follow-up to
the simpler case considered here.
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