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Introduction to Epidemiology

What is Infectious Disease Epidemiology?

Epidemiology: Study of diseases and their determinants in
populations

Epidemiology identifies groups of individuals in populations that have
similar characteristics (sex, age, size etc.), ignoring the uniquess of
individual members.

It tries to determine whether this division of individuals into groups
tells us something more than we could have learned by merely
observing each individual separately.

The goal is to describe, analyze or understand patterns of disease in
such groups.

Dynamics of infections occur at multiple scales: (micro) within-host,
(meso) between hosts, (macro) between populations. We will focus on the
meso scale of microparasitic infections (viruses, bacteria, protozoa!)
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Math Modeling in Epidemiology

Why do Mathematical Modeling?

We would like to:

Understand the competing risks of death from diseases.

Attempt to limit the extent of infection through some form of control
(vaccination, quarantining, social distancing measures, culling in
animals and contact tracing)

Data/resources are limited. Unethical to experiment (humans). We
must decide what is the optimal combination and use of our resources.

Motivation for Mathematical Modeling: Understand the salient features of
infection dynamics; forecast or predict outcomes of diseases in
communities and from changes in demographics, community structure,
disease characteristics and control.
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Math Modeling in Epidemiology

Scientific Computation: Mathematical Modeling, Analysis, Numerics

Courtesy: Wikipedia
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Math Modeling in Epidemiology

The Beginnings of Mathematical Epidemiology

1 Bernoulli: 1760

Daniel Bernoulli formulated and solved a model for smallpox in 1760
Using his model, he evaluated the effectiveness of (vaccination)
inoculating of healthy people against the smallpox virus.

2 Hamer: 1906

Hamer formulated and analyzed a discrete time model in 1906 to
understand the recurrence of measles epidemics.

3 Ross: 1911

Ross developed differential equation models for malaria as a host-vector
disease in 1911.
He won the second nobel prize in medicine

4 Kermack and McKendrick: 1926

Extended Ross’s models.
Obtained the epidemic threshold results.
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Basic Compartmental Deterministic Models Basic Ideas and Assumptions

Deterministic Compartmental Models

Basic Ideas and Assumptions

Populations under study are divided into compartments.

(constant) Rates of transfer between compartments are expressed
mathematically as derivatives with respect to time of the sizes of the
compartments: systems of ordinary differential equations

The community size is constant over the duration of the epidemic and
is a large number, N.

The infection is transmitted primarily by person-to person contacts
(e.g., measles)

Individuals are homogeneous and mix uniformly.

Ignore demography, i.e., births and deaths
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Basic Compartmental Deterministic Models The SIS, SIR, SEIR Models

Basic Compartmental Deterministic Models
SIS, SIR, SEIR

SIS Model

S I

SIR Model

S I R

SEIR Model

S E I R

The choice of which compartments to include depends on the characteristics of
the particular disease being modeled and the purpose of the model.
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The SIR Epidemic Model

The SIR Epidemic Model

The SIR Epidemic Model

S I R

Transmission Recovery

Compartments

Susceptibles (S): Individuals susceptible to the disease

Infectious (I ): Infected Individuals able to transmit the parasite to
others

Recovered (R): Individuals that have recovered, are immune or have
died from the disease and do not contribute to the transmission of the
disease

S = S(t), I = I (t),R = R(t) and N = S(t) + I (t) + R(t)

V. A. Bokil (OSU-Math) Mathematical Epidemiology MTH 323 S-2017 8 / 37



The SIR Epidemic Model

SIR Epidemic Model: Compartmental Transfer Rates

Transmission Assumptions

β = Average number of adequate contacts (i.e., contacts sufficient
for transmission) of a person per unit time.

βI

N
Average number of contacts with infectives per unit time of one

susceptible.(
βI

N

)
S Number of new cases per unit time due to the S

susceptibles. (Horizontal Incidence)

Recovery Assumptions

A fraction α of infectives leave the infective class in unit time.

There is no entry or departure from the population except possibly
through death from the disease.
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The SIR Epidemic Model

The Basic SIR Epidemic Model

The SIR Epidemic Model

S I R

β α

The deterministic SIR epidemic model for this process is

dS

dt
= −βI

S

N
dI

dt
= βI

S

N
− αI

dR

dt
= αI

The parameters of the model are

β = the transmission rate (effective contact rate)

α = the recovery or removal rate
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The SIR Epidemic Model

The Basic SIR Deterministic Epidemic Model

The SIR Epidemic Model

S I R

β α

Let s = S/N, i = I/N and r = R/N. Dividing the equations for S , I and
R by N we get the deterministic SIR epidemic model for this process in
the form

ds

dt
= −βsi

di

dt
= βsi − αi

dr

dt
= αi
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The SIR Epidemic Model Numerical Simulations

The Basic SIR Deterministic Epidemic Model: A Numerical
Simulation

Example 1

Initial values are: i(0) = 0.001, s(0) = 0.999, r(t) = 0,

Parameter values are: β = 0.3, α = 0.1.
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Model predicts that there is an epidemic.
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The SIR Epidemic Model Numerical Simulations

The Basic SIR Epidemic Model: Phase Plane Portrait for Example 1

Parameter values are: β = 0.3, α = 0.1.

The Basic Reproduction Number (BRN) R0 =
β

α
= 3
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The SIR Epidemic Model Numerical Simulations

The Basic SIR Deterministic Epidemic Model: A Numerical
Simulation

Example 2

Initial values are: i(0) = 0.001, s(0) = 0.999, r(t) = 0,

Parameter values are: β = 0.3/4, α = 0.1.
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Model predicts that the disease dies out
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The SIR Epidemic Model Numerical Simulations

The Basic SIR Epidemic Model: Phase Plane Portrait for Example 2

Parameter values are: β = 0.3/4, α = 0.1.

The BRN R0 =
β

α
= 0.75
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The SIR Epidemic Model Numerical Simulations

SIR Epidemic Model:
Two Types of Outcomes

We have seen two types of outcomes

R0 = 3
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What values of parameters determine the behavior of the model?
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The SIR Epidemic Model Numerical Simulations

What do Real Curves Look Like?
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The SIR Epidemic Model Conditions for an Epidemic

Conditions for an Epidemic

Equation for Infecteds

di

dt
= βsi − αi = (

βs

α
− 1)αi

Initially s(0) ≈ 1
An epidemic occurs if the number of infecteds increases initially

di

dt
> 0 =⇒ β

α
> 1

The disease dies out if the number of infecteds decreases initially

di

dt
< 0 =⇒ β

α
< 1

Example 1:
β

α
= 3 > 1 Example 2:

β

α
= 0.75 < 1

The number
β

α
= R0, is called The Basic Reproduction Number
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The SIR Epidemic Model The Basic Reproduction Number

The Basic Reproduction Number

R0 for the Basic SIR Model

R0 =
β

α
= β × 1

α
= (average # of adequate contacts of a person/unit time)

× (mean waiting time in the infectious compartment)

Definition of R0

The mean number of secondary infections generated by a single infected in
a completely susceptible population

Conditions for an Epidemic

If R0 > 1 an epidemic occurs in the absence of intervention.

If R0 < 1 the disease dies out.

V. A. Bokil (OSU-Math) Mathematical Epidemiology MTH 323 S-2017 19 / 37



The SIR Epidemic Model The Basic Reproduction Number

Qualitative Analysis of SIR Model

Let T = {(s, i) |s ≥ 0, i ≥ 0, s + i ≤ 1}. Then T is positively invariant
and unique solutions to the SIR model exist in T for all positive times, so
that the SIR model is mathematically and epidemiologically well-posed.

THEOREM: Let ((s(t), i(t)) be a solution of the SIR model in T .

1 If R0s(0) > 1, then i(t) first increases up to a maximum value
imax = i(0) + s(0)− 1/R0 − [ln(R0s(0))]/R0 and then decreases to
zero as t →∞. The susceptible fraction s(t) is a decreasing function
and the limiting value s∞ is the unique root in (0, 1/R0) of the
equation

i(0) + s(0)− s∞ + ln(s∞/s(0))/R0 = 0

2 If R0s(0) < 1, then i(t) decreases to zero at t →∞.
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The SIR Epidemic Model The Basic Reproduction Number

What Else Does the Model Tell Us?

Preventing Epidemics

If R0 > 1 an epidemic is prevented when R0s(0) < 1. Thus, if the initial
susceptible fraction has been reduced to less than 1/R0, for example by
immunization, then an epidemic can be prevented.
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The SIR Endemic Model

The SIR Endemic Model

Additional Assumptions

Include demography, i.e., births and deaths

The SIR Endemic Model

Births S I R Deaths

Deaths Deaths

Transmission Recovery
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The SIR Endemic Model

The Basic SIR Deterministic Endemic Model

Assumptions

An infection is endemic in a community when transmission persists.

This requires replenishment of susceptibles.

This happens by including births and deaths.

We are now working on longer time scales.
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The SIR Endemic Model

The Basic SIR Deterministic Endemic Model

Let s = S/N, i = I/N and r = R/N.

SIR endemic model

ds

dt
= λ− λs − βsi

di

dt
= βsi − αi − λi

dr

dt
= αi − λr

Parameters

β = the transmission rate (effective contact rate)

α = the recovery or removal rate

λ = birth, death rate
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The SIR Endemic Model

SIR Endemic Model: Phase Portrait, Disease-Free Equilibrium

Parameter values are: λ = 1/60, β = 1.05, α = 1/3.

The BRN R0 =
β

α + λ
= 0.5

The endemic SIR model eventually settles down to a Disease Free
Equilibrium (DFE).
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The SIR Endemic Model

SIR Endemic Model: Phase Plane Portrait, Endemic Equilibrium

Parameter values are: λ = 1/60, β = 1.05, α = 1/3.

The BRN R0 =
β

α + λ
= 3

The endemic SIR model eventually settles down to an Endemic
Equailibrium.
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The SIR Endemic Model Computing Endemic Equilibrium

The SIR Endemic Model: Disease Free OR Endemic Equilibrium

THEOREM: Let (s(t), i(t)) be a solution of the endemic SIR model in T .
The solution to the endemic SIR model eventually settles down to a steady
state. We determine this steady state by solving the equations

ds

dt
= 0, and

di

dt
= 0

1 If R0 < 1 or i(0) = 0 then all solution paths approach the Disease
Free Equilibrium (DFE) se = 1, ie = 0.

2 If R0 > 1 then all solution paths with i(0) > 0 approach the endemic

equilibrium se =
α + λ

β
=

1

R0
and ie =

λ(R0 − 1)

β
.
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Limitations

Limitations of Models

The two classic models presented assume that the total population
size remains constant

They assume that the population is uniform and homogeneously
mixing. Mixing depends on many factors including age.

Different geographic and social-economic groups have different
contact rates.

These models ignore random effects, which can be very important
when s or i are small, e.g., during early stages.
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Limitations

Two Species Disease and Population Dynamics

Disease models with birth and growth included are designed to determine
long-term dynamics of a population of hosts with a common disease

General Disease and Population Model

dS1

dt
= g1(N1,N2)− B1(S1,S2, I1, I2)

dI1
dt

= B1(S1,S2, I1, I2)− d1I1

dS2

dt
= g2(N1,N2)− B2(S1,S2, I1, I2)

dI2
dt

= B2(S1,S2, I1, I2)− d2I2

gi are growth functions, Bi are disease incidence functions for ith species,

di = δi + γi :rates at which members of the infectious class are lost due to
disease (δi ), or recovery (γi ).
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Limitations

SIS Model: Two Species Transfer Diagram

S1 S2 

I2 I1 

),(~ 211 NNb

22β

),(~ 212 NNd),(~ 211 NNd

),(~ 212 NNb

),(~ 211 NNd ),(~ 212 NNd

),(~ 212 NNb),(~ 211 NNb
11β 1γ 2γ

12β21β

1δ 2δ
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Limitations

Competing Species with a Pathogen

We consider n competing species that are affected by one pathogen.

dSi

dt
=

birth︷ ︸︸ ︷
biNi

1−
n∑

j=1

aij
Nj

θij

−
death︷ ︸︸ ︷

diSi

1 +
n∑

j=1

(1− aij)
Nj

ψij


− Si

n∑
j=1

αij(Nj)
Ij
Nj︸ ︷︷ ︸

infection

+ γi Ii︸︷︷︸
recovery

,

dIi
dt

= Si

n∑
j=1

αij(Nj)
Ij
Nj
− γi Ii − di Ii

1 +
n∑

j=1

(1− aij)
Nj

ψij

− virulence︷︸︸︷
δi Ii ,

dNi

dt
= riNi

1−
n∑

j=1

Nj

Kij

− δi Ii ,
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Limitations

Disease and Population Model

Why do we care?

A key issue at the interface of community ecology and infectious disease
epidemiology is how the interdependence of hosts and parasites affects
species coexistence (Collinge and Ray, 2006)

Red and Grey Squirrels

Native red squirrels are being replaced by non-native grey squirrels in the
U.K.

Simulations indicate competition alone cannot account for the rate of red
squirrel decline

Experiments show that parapoxvirus, carried by grey squirrels, has almost no
effect on grey squirrels but causes death in red squirrels (Tompkins, White,
and Boots (2003)

Tompkins, et. al., use a competition and disease model for red and grey

squirrels to show that the virus can help ecologists fully understand the

process leading to the extinction of red squirrels.
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Limitations

Non Spatial Models of Competition and Disease: Other Examples

Several examples in the literature

Red and Grey squirrels affected by the Parapox virus [Tompkins et.
al.] in the United Kingdom.

Native and introduced grass species affected by the Barley and Cereal
Yellow dwarf viruses in Western California and Oregon [Moore et. al.].

Multiple species of larval amphibians and a pathogenic water mold
Saprolegnia ferax [Kiesecker et. al.]

V. A. Bokil (OSU-Math) Mathematical Epidemiology MTH 323 S-2017 33 / 37



Limitations

Non Spatial Models of Competition and Disease: Other Examples

Several examples in the literature

Red and Grey squirrels affected by the Parapox virus [Tompkins et.
al.] in the United Kingdom.

Native and introduced grass species affected by the Barley and Cereal
Yellow dwarf viruses in Western California and Oregon [Moore et. al.].

Multiple species of larval amphibians and a pathogenic water mold
Saprolegnia ferax [Kiesecker et. al.]

V. A. Bokil (OSU-Math) Mathematical Epidemiology MTH 323 S-2017 33 / 37



Limitations

Non Spatial Models of Competition and Disease: Other Examples

Several examples in the literature

Red and Grey squirrels affected by the Parapox virus [Tompkins et.
al.] in the United Kingdom.

Native and introduced grass species affected by the Barley and Cereal
Yellow dwarf viruses in Western California and Oregon [Moore et. al.].

Multiple species of larval amphibians and a pathogenic water mold
Saprolegnia ferax [Kiesecker et. al.]

V. A. Bokil (OSU-Math) Mathematical Epidemiology MTH 323 S-2017 33 / 37



Limitations

Current Work: Plant Vector Pathogen Model & Infected Planting

Case Study: African Cassava Mosaic Virus

Healthy Plants 
S 

Infected Plants 
I 

Infective Vectors 
W 

Non-Infective Vectors 
U 

𝑏𝑆(1 −
(𝑆 + 𝐼)

θ
) 

β𝑆𝑊 

𝑑𝐼 α𝐼 

γ𝐼𝑈 

g𝐼 

𝑑𝑆 

bε𝐼(1 −
(𝑆 + 𝐼)

θ
) 

a(𝑈 +𝑊)(1 −
(𝑈 +𝑊)

κ(𝑆 + 𝐼)
) 

𝑐𝑊 𝑐𝑈 
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Conclusions

Conclusions

Different deterministic models can be constructed by choosing
different number and types of compartments.

Analysis based on theory of dynamical systems.

Modeling clarifies what the underlying assumptions are

Model analysis and simulation predictions suggest crucial data that
should be gathered

Model analysis and simulation suggest control strategies that could be
implemented.

Estimates of R0 for various diseases, although crude ballpark
estimates for the vaccination-acquired immunity level in a community
required for herd immunity, are useful for comparing diseases.
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Appendix References and Further Reading
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