Name: ____

Instructions:

- One 3×5 in. notecard (front and back) may be used.
- A basic scientific calculator may be used for numerical computations. However, sufficient work or explanation must be presented to receive credit.
- NO PROGRAMMING OR GRAPHING CALCULATORS ARE ALLOWED
- 1. Let O = (0,0) denote the origin, P be the point with rectangular coordinates (1,2), and Q the point with rectangular coordinates (-2, -1).
 - (a) (15 points) On a set of rectangular coordinate axes accurately draw the vector $\mathbf{u} = \overrightarrow{OP}$, the vector from O to P, $\mathbf{v} = \overrightarrow{PQ}$, the vector from P to Q, and $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ (the orthogonal projection of \mathbf{u} onto \mathbf{v}). Make sure to label the vectors.
 - (b) (10 points) Compute $\text{proj}_{\mathbf{v}}\mathbf{u}$ and $\text{scal}_{\mathbf{v}}\mathbf{u}$ (the scalar component of \mathbf{u} in the direction of \mathbf{v}). Check: Do your computations and sketch agree?
- 2. Given $\mathbf{v} = \mathbf{i} + 4\mathbf{k}$ and $\mathbf{w} = 3\mathbf{i} + 2\mathbf{k}$
 - (a) (5 points) Find the dot product $\mathbf{v} \cdot \mathbf{w}$.
 - (b) (5 points) Find the angle between \mathbf{v} and \mathbf{w} .
 - (c) (5 points) Find a vector orthogonal to both \mathbf{v} and \mathbf{w} .
- 3. (10 points) A projectile is launched from the origin at an angle of α radians to the horizontal and with an initial speed of 125 ft/sec. Assume that the x-axis is the horizontal, the y-axis is vertical, and the only force acting on the object is gravity. Find the position function $\mathbf{r}(t)$ for this projectile.
- 4. Consider the helix $\mathbf{r}(t) = \langle 4\cos t, 4\sin t, 3t \rangle, -\infty < t < \infty$.
 - (a) (5 points) Find the velocity $\mathbf{v}(t)$
 - (b) (5 points) Find the speed
 - (c) (5 points) Find the distance traveled along the curve in one unit of time
 - (d) (5 points) Find the unit tangent vector $\mathbf{T}(t)$
 - (e) (5 points) Find the acceleration $\mathbf{a}(t)$
 - (f) (5 points) Compute the principle unit normal vector $\mathbf{N}(t)$
 - (g) (5 points) Compute the curvature $\kappa(t)$
 - (h) (5 points) Compute the components of acceleration in the direction of $\mathbf{N}(t)$ (a_N) , and the direction of $\mathbf{T}(t)$ (a_T)
- 5. (10 points) Find the arc length of the spiral curve $r = e^{\theta}$ for $0 \le \theta \le 2\pi$.
- 6. (10 points) Consider the circle $\mathbf{r}(t) = \langle R \cos t, R \sin t \rangle$, for $0 \le t \le 2\pi$, where R > 0. Show that the curvature $\kappa = 1/R$.