Name:

Instructions:

- One 3×5 in. notecard (front and back) may be used.
- A basic scientific calculator may be used for numerical computations. However, sufficient work or explanation must be presented to receive credit.
- NO PROGRAMMING OR GRAPHING CALCULATORS ARE ALLOWED

1. Let $O=(0,0)$ denote the origin, P be the point with rectangular coordinates $(1,2)$, and Q the point with rectangular coordinates $(-2,-1)$.
(a) (15 points) On a set of rectangular coordinate axes accurately draw the vector $\mathbf{u}=\overrightarrow{O P}$, the vector from O to $P, \mathbf{v}=\overrightarrow{P Q}$, the vector from P to Q, and $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ (the orthogonal projection of \mathbf{u} onto $v)$. Make sure to label the vectors.
(b) (10 points) Compute $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ and $\operatorname{scal}_{\mathbf{v}} \mathbf{u}$ (the scalar component of \mathbf{u} in the direction of \mathbf{v}). Check: Do your computations and sketch agree?
2. Given $\mathbf{v}=\mathbf{i}+4 \mathbf{k}$ and $\mathbf{w}=3 \mathbf{i}+2 \mathbf{k}$
(a) (5 points) Find the dot product $\mathbf{v} \cdot \mathbf{w}$.
(b) (5 points) Find the angle between \mathbf{v} and \mathbf{w}.
(c) (5 points) Find a vector orthogonal to both \mathbf{v} and \mathbf{w}.
3. (10 points) A projectile is launched from the origin at an angle of α radians to the horizontal and with an initial speed of $125 \mathrm{ft} / \mathrm{sec}$. Assume that the x -axis is the horizontal, the y -axis is vertical, and the only force acting on the object is gravity. Find the position function $\mathbf{r}(t)$ for this projectile.
4. Consider the helix $\mathbf{r}(t)=\langle 4 \cos t, 4 \sin t, 3 t\rangle,-\infty<t<\infty$.
(a) (5 points) Find the velocity $\mathbf{v}(t)$
(b) (5 points) Find the speed
(c) (5 points) Find the distance traveled along the curve in one unit of time
(d) (5 points) Find the unit tangent vector $\mathbf{T}(t)$
(e) (5 points) Find the acceleration $\mathbf{a}(t)$
(f) (5 points) Compute the principle unit normal vector $\mathbf{N}(t)$
(g) (5 points) Compute the curvature $\kappa(t)$
(h) (5 points) Compute the components of acceleration in the direction of $\mathbf{N}(t)\left(a_{N}\right)$, and the direction of $\mathbf{T}(t)\left(a_{T}\right)$
5. (10 points) Find the arc length of the spiral curve $r=\mathrm{e}^{\theta}$ for $0 \leq \theta \leq 2 \pi$.
6. (10 points) Consider the circle $\mathbf{r}(t)=\langle R \cos t, R \sin t\rangle$, for $0 \leq t \leq 2 \pi$, where $R>0$. Show that the curvature $\kappa=1 / R$.
