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Multiple Integration
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13.1

Double Integrals over
Rectangular Regions
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Table 13.1

Derivatives
Single variable: f(x) f'(x)

df af af

ax’ dy’ az

Several variables: f(x, y) and f(x, v, z)

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Integrals

'lbf(.x]dx

hs//ﬂx’y)dﬂ’-b/[ Fxy.2)dv
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:..-A three-dimensional solid bounded by 7 = f(x, v) and a region R |

:'JL ':JL

FIGURE 13.1 (a) (b)
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T z=f(x,y)

b

(X,. ¥,) 1s a point in the kth ';
- rectangle, which has area
CAA, = Ax Ay,

FIGURE 13.2
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./"l"nlunw of kth hﬂx\
| = flx.5) a4,
b

FIGURE 13.3

n=16x 16 =256

==

A—~D

FIGURE 13.4
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DEFINITION  Volumes and Double Integrals
Let f be defined on a rectangular region R in the xy-plane. If the limit

_lim Ef(fk,?k) AA;
A—0 k=1

exists for all partitions of R and for all choices of (x;, y,) within those partitions, it
is called the double integral of f over R, denoted ﬂR f(x,y)dA, and f is said to
be integrable on R. If f is nonnegative over R, then the double integral equals the
volume of the solid bounded by z = f(x, y) and the xy-plane over R.

Slide 13- 9
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Alx)

y=12

A slice at a fixed value of x
has area A(x), where 0 = x = |.

FIGURE 13.5
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&
e

1=6—2x—y

I3

v

A slice at a fixed value of y has
area A(v), where 0 = y = 2.

FIGURE 13.6
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THEOREM 13.1 (Fubini) Double Integrals on Rectangular Regions
Let f be continuous on the rectangular region R = {(x,y):a = x = b,c =y =d}.
The double integral of f over R may be evaluated by either of two iterated integrals:

[/f(x,y)dA = '/Cd'/abf(%y)dxdy = /:/Edf(x,y)dydx
R _

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 13- 12



z =4+ 9x%y? z=4 + 9y’

?‘_‘"__E g i f"""i . : =
Ly 2
! \
1 - | 201 2 . d 0.2
A(y) = J (4 + 9=y )y V= J J (4 + 9x°y) dx dy Alx) = J (4 + 9x=yv=hdy V= ‘ J (4 + 9%y7) dy dx
-1 | T "—1 | 0 el |

FIGURE 13.7
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DEFINITION Average Value of a Function over a Plane Region

The average value of an integrable function f over a region R is

Fo_ ] // dA
;= area of R flx,y) dA.
R

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 13- 14



- Average value of
< fle,y)=2—x—y

-2

flx,y) =2 —x—y

yz

FIGURE 13.8
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Double Integrals over

General Regions
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FIGURE 13.9
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——

z=f(xy)

h,

FIGURE 13.10
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VA

\

S~ oo
\- y = glx)
s
} : >
a b A
VA
v = h(x)
R
¥y = gx)
i —>
a b X
VA
v = h(x)
y = g(x)
a h X

FIGURE 13.11
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g ™
Integrate
the Cross- z=f(x,v)
sectional
areas A(x)
o J

Y= 8w

y = h(x)

FIGURE 13.12
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' The bounding curves |
- determine the limits
- of integrationiny. |

YA
2

!

[\_“' e — — — — — — — ——

I
I
I
I
I
I
I
I
I
I
1
2

" The projection of R
on the x-axis
determines the limits
of integration in x.

N,

FIGURE 13.13
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16—x°
A(x) = J. 2x2y dy
3

FIGURE 13.14
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.T j.. Y= E_,:-{.T} .1". jt y *
x = g(y)

d =+

x = h(y)

FIGURE 13.15
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THEOREM 13.2 Double Integrals over Nonrectangular Regions

Let R be a region bounded below and above by the graphs of the continuous func-
tions y = g(x) and y = h(x), respectively, and by the lines x = aand x = b.If f
1S continuous on R, then

h(x)
//f(x dﬂ—//()f(x,y)dya’x.

Let R be a region bounded on the left and right by the graphs of the continuous
functions x = g(y) and x = h(y), respectively, and the linesy = cand y = d. If
f is continuous on R, then

" d h(y)
//f(x,y)dA=// f(x,y)dxdy.
i c Jg(y)
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' N
- The bounding curves |
- determine the limits
~of integration in x.

'd

The projection of R on the
Pro] N
- y-axis determines the Iimits
- of integration 1n y.

L

FIGURE 13.16
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21

X

FIGURE 13.17
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R 1s bounded above and below, |
_and on the right and left by curves. |

FIGURE 13.18
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X

FIGURE 13.19

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 13 - 28



FIGURE 13.20
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VA Vo NV VA Vi x
. y s 2
sin x< dx dy f J sin x~ dy dx
0o v 0o "0

- Integrating first
- with respect to x
. does not work. Instead...

... we integrate first
with respect to v.

(a) (b)
FIGURE 13.21
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P i
| Intersection
curve C

—

_on xy-plane
FIGURE 13.23
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FIGURE 13.24
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4 |

Volume of 9011(1 = (Area of R) >< (hmght)
= Area of R = ”MA '

FIGURE 13.25
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= : : | | % >
—4/ —1 1 4 4

y=4x + 12
FIGURE 13.26
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Double Integrals 1n
Polar Coordinates
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< Surface
2 v
=9 —x"—y°
3
9 orz=9 —r°

Region of integration
{(x, y): X2 + v2 = 9)
or {(r,8):0=r=3)

FIGURE 13.27
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itegration
.

. }.- = E]]_

=r=3)

FIGURE 13.28

¥y

Examples of

| polar rectangles |

Ay

e
< R
\ R //
.f‘.? \ ,_/' {,—"’r
B b\ . “\B
N @ _ N\ v Ne _
0 hooX > ¥ NV v
v
Eyﬁb. D=r=bh nE;Eh
=0=% a=0=p a=0=p
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I
R={r0)a=r=b,a=0=/}

0

FIGURE 13.29
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FIGURE 13.30
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THEOREM 13.3 Double Integrals over Polar Rectangular Regions
Let f be continuous on the region in the xy-plane R = {(r,0):0 = a =r = b,
a =60 = B}, where B — a = 2. Then

. B b
//f(r,ﬂ) dA = / / f(r,0) rdrdo.
"R: S S

If £ is nonnegative on R, the double integral gives the volume of the solid bounded
by the surface z = f(r,6) and R.

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 13 - 41




R=lir@0=r=30=0=2w|

FIGURE 13.31
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=+ 10

R=[(rl=r=s4,0=0=217]

FIGURE 13.32
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'

Inner interval
of integration:
gO)=r=h0)

W 8 Outer interval
of integration:

R={(r.0):0=g0) <r=h@),a=6=<p}

FIGURE 13.33
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THEOREM 13.4 Double Integrals over More General Polar Regions
Let f be continuous on the region in the xy-plane

R={(r,0:0=g(0) =r=h).a=0=p}

where B — a = 2. Then,

' B h(0)
//f(r,ﬂ) dA = f / f(r,0) rdrdo.
’ a Jg(0)

If f is nonnegative on R, the double integral gives the volume of the solid bounded
by the surface z = f(r,6) and R.

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 13- 45




YA r=4cos 6

™
3

- The inner and outer boundaries of R are |

traversed, for —% =60= %

%, vy

FIGURE 13.34
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Radial lines begin at the origin

Radial lines begin at the origin | = Radial lines begin at the origin
and exit at r = 4 cos 6.

and exit at r = 4 cos 8. and exit at r = 2.

YA

=1
[}
1k

/ 2 X X /
j:{}l ! f:{}
|
rl
H=—Tt
- T w T ™ T T
R L ] == L o o= L
| g 3 =0=—3 - 3 =0=73 3 =0=3
L1 -T- Y - .
T/ w
% - B -
0=-3

FIGURE 13.35 = dcosn 0
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FIGURE 13.36
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Triple Integrals
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(X ¥ Z)

n AV, = Ax, Ay, Az,

—

|‘ '

FIGURE 13.37 x
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"Lines parallel

| . "
) | O 7-axi1s exit
< l/’ the region D |
z=Hx, y) —Ll— i atz = H(x.y) |

Lines parallel |
|
to z-axis enter |
the region D |

atz = G, 1}

X

Hix. v) :
I JJJ}“{J{. v.2)dV = fJ- U flx.v.2) e:f..].«;m
| C{t V)

FIGURE 13.38
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FIGURE 13.39
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@\H

v=hix) T/=—=

B B Hix, v
J flx v z) = ’ [j‘"{r v, 2) dz dv dx

H rr 1.|'r:|{¢='-+ |

Ay

Lines parallel to y-axis
exit R at v = h(x)

v = fx)

|

|

| - |

| v=glx) \\

L : N
| o ] "'_
7] b A

¥ varies .......................... .
fromatoh |

Lines parallel to y-axis
enter R at v = g(x)
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Table 13.1

Integral Variable Interval

Inner 4 G(x,y) = z = H(x,y)
Middle y g(x) =y = h(x)
Outer X a=x=D>b
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THEOREM 13.5 Triple Integrals

LetD = {(x,v,2):a=x=Db,g(x) =y = h(x),G(x,y) =z = H(x,y)},
where g, h, G, H are continuous functions. The triple integral of a continuous
function f on D is evaluated as the iterated integral

h(x xm}
[/f(x }’,z)dV—// / xX,v,z)dzdydx.
G(x,v)
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‘;//r 7 varies
_ fromOto |.
VA
2+ L
v varies
0 to 2.
i f -
i 3 X
| X varies )

- from O to 3.

B __
M:fj I (2 =z)dzdydx |
§ 0700 :

FIGURE 13.40
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Table 13.2

Integral Variable
Inner Z
Middle y
Outer X

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Interval

S
I\
= =
I

A

-
A
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2
——
2
|
o)

FIGURE 13.41
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¥ =0

" Middle integral:

. ) \ ' x varies fr ' 7.
Inner integral: | v varies from 0 to

v varies from | Outer integral: ;

Otod — 2x 4—2y | zvanes from 0 to 6. |

L - J'j J ch ded- | :
070

FIGURE 13.42 (a) (b)
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-

3 5
L el . -
y==x ~ y=16 —3x — -
b
’}.

- Inner integral

FIGURE 13.43 (a)
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- with respect to y |

-

=VB
S — .
: 2 VR— 22 16—32=22
:j f fd}‘ dzdx |
L2 V=2 22
A
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Y The plane R is a triangular
= < o X=y / region in the yz-plane |

The liney = 2
in the yz-plane

' Inner integral:

o - Middle integral:
x varies from

v varies from 0 to z.
- Outer integral:

' z varies from

The plane 0 to V.

X =2

FIGURE 13.44 X
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<A <A
VT I
— .
y=0 Y= ' Projection | / e =0
+ - of D on the /_,_,..4—-'/ '
‘ xz-plane. R
R is a triangular D P r=1z |
region in the
xz-plane
v B R - e -
v | Inner integral: VT Middle integral: x varies from () to Z.
- v varies from 0 to.x. - Outer integral: z varies from 0 to V.
FIGURE 13.45 (a) (b)
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DEFINITION Average Value of a Function of Three Variables
If £ is continuous on a region D of R, then the average value of f over D is

1
= volume(D)/] flx.y,2)dv.
D
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Triple Integrals in Cylindrical

and Spherical Coordinates

PEARSON
—_— Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley



X

FIGURE 13.46

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Sllde 13 - 64



Table 13.3

Name Description Example
Cylinder {(r,0,z):r =a}l,a>0 :T
— a0
X
|
Cylindrical shell {(r,0,2):0 <a=r=b} :#
/
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Table 12.3 (Continued)

Name Description Example

-

J

Vertical half plane {(r,0,2):0 = 0y}

: ¥
* —l~
fl

Horizontal plane {(r.0,z):

&
Il
=
——
—
-
=

Cone (r,8,z):z=ar},a#0 T
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R T e e

X

(b)
FIGURE 13.47
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2
-

V
tan @ = —

e
—

X y = rsin 6

FIGURE 13.48
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Base area = Fk Ar A6

b —

Approximate volume AV, =7, Ar Af Az
FIGURE 13.49
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—

FIGURE 13.50
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THEOREM 13.6 Triple Integrals in Cylindrical Coordinates
Let f be continuous over the region

D=1{r,0,2):2g0)=r =h0),a=0=B,Gx,y) =z=H(xy)}

Then f is integrable over D and the triple integral of f over D in cylindrical coor-
dinates 1s

B rh(8) pH(rcosf,rsing)
/]f(h&@dv: / / / f(r,0,z)dzrdrdo.
> a Jg(#) JG(rcosb,rsinb)

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 13- 71




FIGURE 13.51

ia)
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-

J”ww+ﬂ¢m

R_I

In cylindrical coordinates.

integrate in z with —1 =z = 2;

(b)

FIGURE 13.51

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

... then integrate over R with
W w
0=r=2V2, -ZI=0=%

(c)

Slide 13- 73




4

L A=r
”J (5—2dzdA

‘40
{a) K

Integrate firstin Z
. ¥
withO=z=4-r..

FIGURE 13.52 (b)
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3
" -

J (5 — 2) dzr dr df

2o 2 4

|

000

... then integrate over R
with0=r=2,0=60=12m

{c)
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X

_ \_r"{:'+13

£

Integrate first in z ... then integrate over R
withr=z=12 - r... with0=r=30=0=2m

FIGURE 13.53
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X

FIGURE 13.54
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=
—

P(p. ¢, 0)

I = pCos @

X = psin ¢ cos 0 F=psme

= —
—_— —
—
—
—

p sin ¢ sin 6

X y

FIGURE 13.55
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— 24 cOS ©
¥ p=Zlacose

(a)

p = asec @

(b)
FIGURE 13.56
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Table 13.4
Name Description Example
Sphere. radius a. Hp.e.8):p=al.a=1 *"-T

center (0,0, 0)

Cone {(p.e.0):¢0 = @}, 00 # 0,7/2,7 T

Vertical half plane e, 0)0 = 8y} “4
H”

(Continued)
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Table 132.4 (Continued)

Name Description
Horizontal plane, {(p.e.0):p = asece,0 = ¢ < 7/2}
z=4a
Cylinder, radius {(p,e.0):p =acsce,0< ¢ < 7}
a =0

T

Sphere, radius a = 0, {(p,¢.0):p = 2acos,0 = ¢ = 7/2}
center (0,0, a)

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
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e

Approximate volume =
AV, = Ef sin ¢, Ap Ap A

FIGURE 13.57
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g(e. 0) = p = (e, 0) a=0=Ba=¢=b

FIGURE 13.58
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ZA ’
P = hieg, 8) ¢=b
/
p=gle, 0)
FT .'1.‘
""-.__‘_‘ ﬂ ~ o
R fﬁIntEgl‘ﬂte first in p ¥ then integrate in ¢ and 6 |
with g(g. 0) = p = h(e. 0):... witha=e=ba=0=B.

FIGURE 13.59
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THEOREM 13.7 Triple Integrals in Spherical Coordinates
Let f be continuous over the region

D = {(p,¢,0):8(¢,0) = p = h(g,0),a = ¢ = b,a =6 = B}

Then f is integrable over D and the triple integral of f over D in spherical coordi-

nates is
B rb rhie.0)
//f(p,qo,@)dV=/// f(p,qa,ﬁ)pzsinqadpdcpdﬁ.
( a Ja Jg(e.0)
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p
@ varies from

: 4
; y
2

JEIE

: f |rP varies from \j
g Cinner sphere (p = 1) |
i to outer sphere (p = 2). | =
D\ , / . ’ 2
EN ¢ =
i f=0
Y —a T~
¥ Y
X X p
| 0 varies from
[6=0t0= z.
(a) (b)

FIGURE 13.60
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(a)

FIGURE 13.61
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¢ varies from
e=0tog= E

1
1
1
1
1
|
]
]

| p varies \
- from 0 to 4.
A A

— s

) Vv
r @ varies from \!
9=Ut09=2ﬂ'.j X
(b) (c)
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Integrals for Mass Calculations
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-
‘L\Center of massj [Center of mass ?‘?]

[Circular disk j ( Irregular Shape}
FIGURE 13.62
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PR — d >

m m

1

FIGURE 13.63
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mx, -+ MAX,
-+ M-

X =
Fﬂl

FIGURE 13.64
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Balance point

FIGURE 13.65
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m, = 3 mn, ny = m, 6
i D

x, = —1.2 / OA \

X, = —0.4

[E—

Center of mass
—_ 1
Y760

FIGURE 13.66
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X =da A x=>5

Density (mass per unit length)
varies with x.

FIGURE 13.67
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X,=a X, X, / X, X = b

Mass = m, = p(x,) Ax
FIGURE 13.68
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DEFINITION Center of Mass in One Dimension
Let p be an integrable density function on the interval [a, b] (which represents a thin

: . L M
rod or wire). The center of mass is located at the point x = —, where the total mo-
m

ment Mand mass m are

b b
M = /xp(x) dx and m = fp(x) dx.
[ i
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4 I

_ M,
x = —=: M, involves
m -

v A | distances from y-axis
5\ "y

r M !
o y = —=: M _involves
Density = p(x, y) y m A
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DEFINITION Center of Mass in Two Dimensions

Let p be an integrable area density function defined over a closed bounded region
R in R% The coordinates of the center of mass of the object represented by R are

M} 1 / ( )dA i % M, | // ( )dA
_—l = — : a R A p— )
m m J APLX, Y na-y m m YL Y

R R

where m = ffR p(x,y) dA is the mass, and M, and M, are the moments with re-
spect to the y-axis and x-axis, respectively. If p is constant, the center of mass is
called the centroid.

|
|
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FIGURE 13.70
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DEFINITION Center of Mass in Three Dimensions

Let p be an integrable density function on a closed bounded region D in R’. The
coordinates of the center of mass of the region are

f:ﬂi::—f//xp(xy,z)dv y = . ///yp(xy,Z)dV
M

xy |
. ///zp(x, y,z)dV
D

where m = [[[p p(x,y,z) dV is the mass, and M,, M,_, and M, are the moments
with respect to the coordinate planes.

1]
Il
Il
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FIGURE 13.73
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FIGURE 13.74
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Change of Variables 1n
Multiple Integrals
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x = g(u, v)
1 I {_r = h(u, v)

FIGURE 13.76
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Table 13.5

Boundary of S in
r0-plane

A 0=r=160=20

B: r=1,0=60=mx/2

C: 0=r=1,0=m/2

S
=~
I
=
<
A
ot w]

= 7/2

= e =

Transformation
equations

=rcosf =r,

=rsinf = 0

= rcosf = cosf,

= rsinf = sinf

= rcosf = 0,

= rsinf =r

x =rcosf =0,

= rsinfd = 0
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A':

D'

Boundary of R in
xy-plane

O=x=1,y=0

quarter unit circle

x=00=y=1

single point (0, 0)
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DEFINITION  One-to-One Transformation

A transformation 7" from a region S to a region R is one-to-one on S if T(P) = T(Q)
only when P = Q, where P and Q are points in S.
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DEFINITION Jacobian Determinant of a Transformation of Two Variables

Given a transformation 7: x = g(u,v),y = h(u, v), where g and h are differentiable

on a region of the uv-plane, the Jacobian determinant (or Jacobian) of T is

ox 0x

Juv) = a(x,y) _ o _dxdy  ox ay‘
’ d(u, v) dy ay| dudv v ou

u ov
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THEOREM 13.8 Change of Variables for Double Integrals

LetT:x = g(u,v),y = h(u,v) be a transformation that maps a closed bounded re-
gion S in the uv-plane onto a region R in the xy-plane. Assume that 7 is one-to-one
on the interior of § and that g and & have continuous first partial derivatives there.
If f 18 continuous on R, then

‘R//f(x’y)d”‘ - ‘S/ff(g(“av),h(uav))li(u, v)| dA.
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Table 13.6

(x,5)
(0, 0)

(0, 1)
(2,5)
(2,4)
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DEFINITION  Jacobian Determinant of a Transformation of Three Variables

Given a transformation 7: x = g(u, v, w),y = h(u,v,w), and z = p(u, v, w), where
g, h, and p are differentiable on a region of uvw-space, the Jacobian determinant

(or Jacobian) of 7" is

d(x,y,z)
Ju, v, w) = =
(u, 0, ) d(u, v, w)
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THEOREM 13.9 Change of Variables for Triple Integrals

LetT:x = g(u,v,w),y = h(u,v,w), and z = p(u, v, w) be a transformation that
maps a closed bounded region § in uvw-space to a region D = T(S) in xyz-space.

Assume that 7" is one-to-one on the interior of § and that g, 4, and p have continu-

ous first partial derivatives there. If f is continuous on D, then

é/f(x, y,2)dV

- [/ f(g(u, v, ?.U), h(u, v, w), p(u, v, “IU)) Ij(u, v, w)l dV.
S
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FIGURE 13.82
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hix,y) = b,

hix, y) = b,

glx,y) = a,

glx,y) = a,

FIGURE 13.83
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between “parallel” curves
map to rectangles in uv-plane.
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