Mth 254 Sample Midterm Problems

1. Let $O=(0,0)$ denote the origin, P be the point with rectangular coordinates $(1,2)$, and Q the point with rectangular coordinates $(-2,-1)$.
(a) On a set of rectangular coordinate axes accurately draw the vector $\mathbf{u}=\overrightarrow{O P}$, the vector from O to $P, \mathbf{v}=\overrightarrow{O Q}$, the vector from O to Q, and $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$, the orthogonal projection of \mathbf{u} onto \mathbf{v}.
(b) Compute $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$ and $\operatorname{scal}_{\mathbf{v}} \mathbf{u}$, the scalar component of \mathbf{u} in the direction of \mathbf{v}.
2. Consider the points $P(-1,0,3), Q(0,3,-6)$. Let O denote the origin.
(a) Find the sum vector $\mathbf{r}=\mathbf{O P}+\mathbf{O Q}$.
(b) Find a vector that is orthogonal to OP, and OQ.
(c) Find the area of the triangle formed by the points O, P, Q.
3. An object moving in space is subject to an acceleration at time t given by

$$
\mathbf{a}(t)=\left\langle t, e^{-t}, 1\right\rangle=t \mathbf{i}+e^{-t} \mathbf{j}+\mathbf{k} \quad \mathrm{m} / \mathrm{sec}^{2} .
$$

Assuming that its initial velocity is $\mathbf{v}(0)=\langle 0,1,1\rangle=\mathbf{j}+\mathbf{k} \mathrm{m} / \mathrm{sec}$ and its initial position is $\mathbf{r}(0)=\langle 4,1,0\rangle=4 \mathbf{i}+\mathbf{j} \mathrm{m}$, find the position $\mathbf{r}(t)$, the velocity $\mathbf{v}(t)$ and the distance travelled $s(t)$ of the object at all times $t \geq 0$.
4. A golf ball is hit from the point $\left\langle x_{0}, y_{0}\right\rangle$ at an angle of 30° with an initial speed of 150 $\mathrm{ft} / \mathrm{sec}$. Find the time of flight, range of the object and maximum height of the object.
5. A particle travels along the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$. in such a manner that its position at time t is given by

$$
\mathbf{r}(t)=\langle 3 \cos t, 4 \sin t\rangle=3 \cos t \mathbf{i}+4 \sin t \mathbf{j} .
$$

(a) Find the velocity $\mathbf{v}(t)$, speed $v(t)$, acceleration $\mathbf{a}(t)$, unit tangent vector $\mathbf{T}(t)$, the principle unit normal vector $\mathbf{N}(t)$, and the curvature $\kappa(t)$.
(b) Compute $\mathbf{a}(t) \cdot \mathbf{T}(t)$. How is this related to speed?

