Chapter 10

Parametric and Polar Curves

10.2

Polar Coordinates

FIGURE 10.18

FIGURE 10.21

FIGURE 10.22
(a)

(b)

FIGURE 10.24

FIGURE 10.25
Cardioid $r=1+\sin \theta$

Table 10.3

$$
\begin{array}{cc}
\boldsymbol{\theta} & \boldsymbol{r}=\mathbf{1}+\sin \boldsymbol{\theta} \\
0 & 1 \\
\pi / 6 & 3 / 2 \\
\pi / 2 & 2 \\
5 \pi / 6 & 3 / 2 \\
\boldsymbol{\pi} & 1 \\
7 \pi / 6 & 1 / 2 \\
3 \pi / 2 & 0 \\
11 \pi / 6 & 1 / 2 \\
2 \pi & 1
\end{array}
$$

13.5

Triple Integrals in Cylindrical and Spherical Coordinates

Table 13.3

Name
Cylinder

Cylindrical shell

$$
\{(r, \theta, z): r=a\}, a>0
$$

$\{(r, \theta, z): 0<a \leq r \leq b\}$

Description

$$
\{(r, \theta, z): 0<a \leq r \leq b\}
$$

Example

Table 13.3 (Continued)
Name
Vertical half plane
$\left\{(r, \theta, z): \theta=\theta_{0}\right\}$$\quad\left\{\begin{array}{l}\text { Description } \\ \text { Horizontal plane } \\ \text { Cone } \\ \{(r, \theta, z): z=a\}\end{array}\right.$

FIGURE 13.54

FIGURE 13.55

FIGURE 13.56

Table 13.4 (Continued)

Name

Horizontal plane
$z=a$

$$
\{(\rho, \varphi, \theta): \rho=a \sec \varphi, 0 \leq \varphi<\pi / 2\}
$$

Description

$$
z=a
$$

(

Cylinde
$a>0$

$$
\{(\rho, \varphi, \theta): \rho=a \csc \varphi, 0<\varphi<\pi\}
$$

Sphere, radius $a>0,\{(\rho, \varphi, \theta): \rho=2 a \cos \varphi, 0 \leq \varphi \leq \pi / 2\}$ center $(0,0, a)$

Chapter 11

Vectors and Vector-Valued Functions

FIGURE 11.5

DEFINITION Scalar Multiples and Parallel Vectors

Given a scalar c and a vector \mathbf{v}, the scalar multiple $c \mathbf{v}$ is a vector whose magnitude is $|c|$ multiplied by the magnitude of \mathbf{v}. If $c>0$, then $c \mathbf{v}$ has the same direction as \mathbf{v}. If $c<0$, then $c \mathbf{v}$ and \mathbf{v} point in opposite directions. Two vectors are parallel if they are scalar multiples of each other.

Finding $\mathbf{u}-\mathbf{v}=\mathbf{u}+(-\mathbf{v})$ by Triangle Rule

Finding $\mathbf{u}-\mathbf{v}$ directly

(b)

FIGURE 11.9
(a)

DEFINITION Position Vectors and Vector Components

A vector \mathbf{v} with its tail at the origin and head at $\left(v_{1}, v_{2}\right)$ is called a position vector (or is said to be in standard position) and is written $\left\langle v_{1}, v_{2}\right\rangle$. The real numbers v_{1} and v_{2} are the x - and y-components of \mathbf{v}, respectively. The position vectors $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ are equal if and only if $u_{1}=v_{1}$ and $u_{2}=v_{2}$.

FIGURE 11.12

Copies of \mathbf{v} at different locations are equal.

(b)

FIGURE 11.13

DEFINITION Magnitude of a Vector

Given the points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$, the magnitude, or length, of $\overrightarrow{P Q}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}\right\rangle$, denoted $|\overrightarrow{P Q}|$, is the distance between P and Q :

$$
|\stackrel{\rightharpoonup}{P Q}|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

The magnitude of the position vector $\mathbf{v}=\left\langle v_{1}, v_{2}\right\rangle$ is $|\mathbf{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}}$.

FIGURE 11.14

$$
c \mathbf{u}=\left\langle c u_{1}, c u_{2}\right\rangle \text { for } c>0
$$

(a)

(b)

FIGURE 11.16

(a)

(b)

$$
\mathbf{u}=\frac{\mathbf{v}}{|\mathbf{v}|} \text { and }-\mathbf{u}=-\frac{\mathbf{v}}{|\mathbf{v}|} \text { have length } 1
$$

FIGURE 11.18

DEFINITION Unit Vectors and Vectors of a Specified Length

A unit vector is any vector with length 1 . Given a nonzero vector $\mathbf{v}, \pm \frac{\mathbf{v}}{|\mathbf{v}|}$ are unit vectors parallel to \mathbf{v}. For a scalar $c>0$, the vectors $\pm \frac{c \mathbf{v}}{|\mathbf{v}|}$ are vectors of length c parallel to \mathbf{v}.

11.2

Vectors in Three Dimensions

$x y z$-space is divided into octants.

FIGURE 11.26

FIGURE 11.27

Plotting ($3,4,5$)

FIGURE 11.28

$(0,0,0)$ and $(3,4,5)$ are opposite vertices of a box.

FIGURE 11.30

FIGURE 11.31

FIGURE 11.33

Sphere: $(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}$
Ball: $(x-a)^{2}+(y-b)^{2}+(z-c)^{2} \leq r^{2}$

FIGURE 11.34

FIGURE 11.36

DEFINTION Magnitude of a Vector

The magnitude (or length) of the vector $\overrightarrow{P Q}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle$ is the distance from $P\left(x_{1}, y_{1}, z_{1}\right)$ to $Q\left(x_{2}, y_{2}, z_{2}\right)$:

$$
|\stackrel{\rightharpoonup}{P Q}|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

11.3

Dot Products

DEFINITION Dot Product

Given two nonzero vectors \mathbf{u} and \mathbf{v} in two or three dimensions, their dot product is

$$
\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta
$$

where θ is the angle between \mathbf{u} and \mathbf{v} with $0 \leq \theta \leq \pi$ (Figure 11.44). If $\mathbf{u}=\mathbf{0}$ or $\mathbf{v}=\mathbf{0}$, then $\mathbf{u} \cdot \mathbf{v}=0$, and θ is undefined.

FIGURE 11.44

DEFINITION Orthogonal Vectors

Two vectors \mathbf{u} and \mathbf{v} are orthogonal if and only if $\mathbf{u} \cdot \mathbf{v}=0$. The zero vector is orthogonal to all vectors. In two or three dimesions, two nonzero orthogonal vectors are perpendicular to each other.

FIGURE 11.46

THEOREM 11.1 Dot Product

Given two vectors $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ and $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$,

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}
$$

THEOREM 11.2 Properties of the Dot Product Suppose \mathbf{u}, \mathbf{v}, and \mathbf{w} are vectors and let c be a scalar.

1. $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$

2. $c(\mathbf{u} \cdot \mathbf{v})=(c \mathbf{u}) \cdot \mathbf{v}=\mathbf{u} \cdot(c \mathbf{v})$
3. $\mathbf{u} \cdot(\mathbf{v}+\mathbf{w})=\mathbf{u} \cdot \mathbf{v}+\mathbf{u} \cdot \mathbf{w}$

Commutative property
Associative property
Distributive property

$$
\begin{gathered}
0 \leq \theta<\frac{\pi}{2} \\
\operatorname{scal}_{\mathbf{v}} \mathbf{u}=|\mathbf{u}| \cos \theta>0
\end{gathered}
$$

(a)

(b)

FIGURE 11.48

DEFINITION (Orthogonal) Projection of \mathbf{u} onto \mathbf{v}

The orthogonal projection of \mathbf{u} onto \mathbf{v}, denoted $\operatorname{proj}_{\mathbf{v}} \mathbf{u}$, where $\mathbf{v} \neq \mathbf{0}$, is

$$
\operatorname{proj}_{\mathbf{v}} \mathbf{u}=|\mathbf{u}| \cos \theta\left(\frac{\mathbf{v}}{|\mathbf{v}|}\right)
$$

The orthogonal projection may also be computed with the formulas

$$
\operatorname{proj}_{\mathbf{v}} \mathbf{u}=\operatorname{scal}_{\mathbf{v}} \mathbf{u}\left(\frac{\mathbf{v}}{|\mathbf{v}|}\right)=\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\right) \mathbf{v}
$$

where the scalar component of u in the direction of v is

$$
\operatorname{scal}_{\mathbf{v}} \mathbf{u}=|\mathbf{u}| \cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{v}|}
$$

11.4

Cross Products

DEFINITION Cross Product

Given two nonzero vectors \mathbf{u} and \mathbf{v} in \mathbf{R}^{3}, the cross product $\mathbf{u} \times \mathbf{v}$ is a vector with magnitude

$$
|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}| \sin \theta,
$$

where $0 \leq \theta \leq \pi$ is the angle between \mathbf{u} and \mathbf{v}. The direction of $\mathbf{u} \times \mathbf{v}$ is given by the right-hand rule: When you put the vectors tail to tail and let the fingers of your right hand curl from \mathbf{u} to \mathbf{v}, the direction of $\mathbf{u} \times \mathbf{v}$ is the direction of your thumb, orthogonal to both \mathbf{u} and \mathbf{v} (Figure 11.56). When $\mathbf{u} \times \mathbf{v}=\mathbf{0}$, the direction of $\mathbf{u} \times \mathbf{v}$ is undefined.

$$
\begin{aligned}
\text { Area } & =\text { base } \times \text { height } \\
& =|\mathbf{u} \| \mathbf{v}| \sin \theta \\
& =|\mathbf{u} \times \mathbf{v}|
\end{aligned}
$$

FIGURE 11.57

THEOREM 11.3 Geometry of the Cross Product

Let \mathbf{u} and \mathbf{v} be two nonzero vectors in \mathbf{R}^{3}.

1. The vectors \mathbf{u} and \mathbf{v} are parallel $(\theta=0$ or $\theta=\pi)$ if and only if $\mathbf{u} \times \mathbf{v}=\mathbf{0}$.
2. If \mathbf{u} and \mathbf{v} are two sides of a parallelogram (Figure 11.57), then the area of the parallelogram is

$$
|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}| \sin \theta .
$$

THEOREM 11.4 Properties of the Cross Product

Let \mathbf{u}, \mathbf{v}, and \mathbf{w} be nonzero vectors in \mathbf{R}^{3}, and let a and b be scalars.

1. $\mathbf{u} \times \mathbf{v}=-(\mathbf{v} \times \mathbf{u})$
2. $(a \mathbf{u}) \times(b \mathbf{v})=a b(\mathbf{u} \times \mathbf{v})$
3. $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=(\mathbf{u} \times \mathbf{v})+(\mathbf{u} \times \mathbf{w})$
4. $(\mathbf{u}+\mathbf{v}) \times \mathbf{w}=(\mathbf{u} \times \mathbf{w})+(\mathbf{v} \times \mathbf{w})$

Anticommutative property
Associative property
Distributive property
Distributive property

FIGURE 11.59

THEOREM 11.5 Cross Products of Coordinate Unit Vectors

$$
\begin{array}{rlrl}
\mathbf{i} \times \mathbf{j} & =-(\mathbf{j} \times \mathbf{i})=\mathbf{k} & \mathbf{j} \times \mathbf{k}=-(\mathbf{k} \times \mathbf{j})=\mathbf{i} \\
\mathbf{k} \times \mathbf{i} & =-(\mathbf{i} \times \mathbf{k})=\mathbf{j} & \mathbf{i} \times \mathbf{i}=\mathbf{j} \times \mathbf{j}=\mathbf{k} \times \mathbf{k}=\mathbf{0}
\end{array}
$$

Area of parallelogram
$=|\overrightarrow{O P} \times \overrightarrow{O Q}|$.
Area of triangle
$=\frac{1}{2}|\overrightarrow{O P} \times \overrightarrow{O Q}|$.

FIGURE 11.60

THEOREM 11.6 Evaluating the Cross Product

Let $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}$ and $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$. Then,

$$
\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|=\left|\begin{array}{cc}
u_{2} & u_{3} \\
v_{2} & v_{3}
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
u_{1} & u_{3} \\
v_{1} & v_{3}
\end{array}\right| \mathbf{k}
$$

11.5

Lines and Curves in Space

FIGURE 11.71

DEFINITION Limit of a Vector-Valued Function

A vector-valued function \mathbf{r} approaches the limit \mathbf{L} as t approaches a, written $\lim _{t \rightarrow a} \mathbf{r}(t)=\mathbf{L}$, provided $\lim _{t \rightarrow a}|\mathbf{r}(t)-\mathbf{L}|=0$. $t \rightarrow a$ $t \rightarrow a$

11.6

Calculus of Vector-Valued Functions

DEFINITION Derivative and Tangent Vector

Let $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, where f, g, and h are differentiable functions on (a, b). Then \mathbf{r} has a derivative (or is differentiable) on (a, b) and

$$
\mathbf{r}^{\prime}(t)=f^{\prime}(t) \mathbf{i}+g^{\prime}(t) \mathbf{j}+h^{\prime}(t) \mathbf{k} .
$$

Provided $\mathbf{r}^{\prime}(t) \neq \mathbf{0}, \mathbf{r}^{\prime}(t)$ is a tangent vector (or velocity vector) at the point corresponding to $\mathbf{r}(t)$.

DEFINITION Unit Tangent Vector

Let $\mathbf{r}=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$ be a smooth parameterized curve for $a \leq t \leq b$. The unit tangent vector for a particular value of t is

$$
\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}
$$

THEOREM 11.7 Derivative Rules

Let \mathbf{u} and \mathbf{v} be differentiable vector-valued functions and let f be a differentiable scalar-valued function, all at a point t. Let \mathbf{c} be a constant vector. The following rules apply.

1. $\frac{d}{d t}(\mathbf{c})=\mathbf{0} \quad$ Constant Rule
2. $\frac{d}{d t}(\mathbf{u}(t)+\mathbf{v}(t))=\mathbf{u}^{\prime}(t)+\mathbf{v}^{\prime}(t) \quad$ Sum Rule
3. $\frac{d}{d t}(f(t) \mathbf{u}(t))=f^{\prime}(t) \mathbf{u}(t)+f(t) \mathbf{u}^{\prime}(t) \quad$ Product Rule
4. $\frac{d}{d t}(\mathbf{u}(f(t)))=\mathbf{u}^{\prime}(f(t)) f^{\prime}(t) \quad$ Chain Rule
5. $\frac{d}{d t}(\mathbf{u}(t) \cdot \mathbf{v}(t))=\mathbf{u}^{\prime}(t) \cdot \mathbf{v}(t)+\mathbf{u}(t) \cdot \mathbf{v}^{\prime}(t) \quad$ Dot Product Rule
6. $\frac{d}{d t}(\mathbf{u}(t) \times \mathbf{v}(t))=\mathbf{u}^{\prime}(t) \times \mathbf{v}(t)+\mathbf{u}(t) \times \mathbf{v}^{\prime}(t) \quad$ Cross Product Rule

DEFINITION Indefinite Integral of a Vector-Valued Function

Let $\mathbf{r}=f \mathbf{i}+g \mathbf{j}+h \mathbf{k}$ be a vector function and let $\mathbf{R}=F \mathbf{i}+G \mathbf{j}+H \mathbf{k}$, where F, G, and H are antiderivatives of f, g, and h, respectively. The indefinite integral of \mathbf{r} is

$$
\int \mathbf{r}(t) d t=\mathbf{R}(t)+\mathbf{C}
$$

where \mathbf{C} is an arbitrary constant vector.

DEFINITION Definite Integral of a Vector-Valued Function

Let $\mathbf{r}(t)=f(t) \mathbf{i}+g(t) \mathbf{j}+h(t) \mathbf{k}$, where f, g, and h are integrable on the interval $[a, b]$.

$$
\int_{a}^{b} \mathbf{r}(t) d t=\left[\int_{a}^{b} f(t) d t\right] \mathbf{i}+\left[\int_{a}^{b} g(t) d t\right] \mathbf{j}+\left[\int_{a}^{b} h(t) d t\right] \mathbf{k}
$$

11.7

Motion in Space

FIGURE 11.81

FIGURE 11.82

DEFINITION Position, Velocity, Speed, Acceleration

Let the position of an object moving in three-dimensional space be given by $\mathbf{r}(t)=\langle x(t), y(t), z(t)\rangle$, for $t \geq 0$. The velocity of the object is

$$
\mathbf{v}(t)=\mathbf{r}^{\prime}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle .
$$

The speed of the object is the scalar function

$$
|\mathbf{v}(t)|=\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} .
$$

The acceleration of the object is $\mathbf{a}(t)=\mathbf{v}^{\prime}(t)=\mathbf{r}^{\prime \prime}(t)$.

Circular motion: At all times $\mathbf{a}(t)=-\mathbf{r}(t)$ and $\mathbf{v}(t)$ is orthogonal to $\mathbf{r}(t)$ and $\mathbf{a}(t)$.

FIGURE 11.83

FIGURE 11.86

On a trajectory on which $|\mathbf{r}(t)|$ is constant, \mathbf{v} is orthogonal to \mathbf{r} at all points.

FIGURE 11.87

FIGURE 11.88

FIGURE 11.89

FIGURE 11.90

FIGURE 11.91

FIGURE 11.92

11.8

Length of Curves

DEFINITION Arc Length for Vector Functions

Consider the parameterized curve $\mathbf{r}(t)=\langle f(t), g(t), h(t)\rangle$, where f^{\prime}, g^{\prime}, and h^{\prime} are continuous, and the curve is traversed once for $a \leq t \leq b$. The arc length of the curve between $(f(a), g(a), h(a))$ and $(f(b), g(b), h(b))$ is

$$
L=\int_{a}^{b} \sqrt{f^{\prime}(t)^{2}+g^{\prime}(t)^{2}+h^{\prime}(t)^{2}} d t=\int_{a}^{b}\left|\mathbf{r}^{\prime}(t)\right| d t
$$

11.9

Curvature and Normal Vectors

THEOREM 11.9 Arc Length as a Function of a Parameter

Let $\mathbf{r}(t)$ describe a smooth curve for $t \geq a$. The arc length is given by

$$
s(t)=\int_{a}^{t}|\mathbf{v}(u)| d u,
$$

where $|\mathbf{v}|=\left|\mathbf{r}^{\prime}\right|$. Equivalently, $\frac{d s}{d t}=|\mathbf{v}(t)|>0$. If $|\mathbf{v}(t)|=1$ for all $t \geq a$, then the parameter t is the arc length.

FIGURE 11.102

(b)

DEFINITION Curvature

Let \mathbf{r} describe a smooth parameterized curve. If s denotes arc length and $\mathbf{T}=\mathbf{r}^{\prime} /\left|\mathbf{r}^{\prime}\right|$ is the unit tangent vector, the curvature is $\kappa(s)=\left|\frac{d \mathbf{T}}{d s}\right|$.

THEOREM 11.10 Formula for Curvature

Let $\mathbf{r}(t)$ describe a smooth parameterized curve, where t is any parameter. If $\mathbf{v}=\mathbf{r}^{\prime}$ is the velocity and \mathbf{T} is the unit tangent vector, then the curvature is

$$
\kappa(t)=\frac{1}{|\mathbf{v}|}\left|\frac{d \mathbf{T}}{d t}\right|=\frac{\left|\mathbf{T}^{\prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|} .
$$

THEOREM 11.11 Alternative Curvature Formula

Let \mathbf{r} be the position of an object moving on a smooth curve. The curvature at a point on the curve is

$$
\kappa=\frac{|\mathbf{a} \times \mathbf{v}|}{|\mathbf{v}|^{3}},
$$

where $\mathbf{v}=\mathbf{r}^{\prime}$ is the velocity and $\mathbf{a}=\mathbf{v}^{\prime}$ is the acceleration.

DEFINITION Principal Unit Normal Vector

Let \mathbf{r} describe a smooth parameterized curve. The principal unit normal vector at a point P on the curve at which $\kappa \neq 0$ is

$$
\mathbf{N}=\frac{d \mathbf{T} / d s}{|d \mathbf{T} / d s|}=\frac{1}{\kappa} \frac{d \mathbf{T}}{d s} .
$$

In practice, we use the equivalent formula

$$
\mathbf{N}=\frac{d \mathbf{T} / d t}{|d \mathbf{T} / d t|},
$$

evaluated at the value of t corresponding to P.

THEOREM 11.12 Properties of the Principal Unit Normal Vector

Let \mathbf{r} describe a smooth parameterized curve with unit tangent vector \mathbf{T} and principal unit normal vector \mathbf{N}.

1. T and \mathbf{N} are orthogonal at all points of the curve; that is, $\mathbf{T}(t) \cdot \mathbf{N}(t)=0$ at all points where \mathbf{N} is defined.
2. The principal unit normal vector points to the inside of the curve-in the direction that the curve is turning.

> \mathbf{N} points to the inside of the curve-in the direction the curve is turning.

FIGURE 11.104

For small Δs
 $\mathbf{T}(s+\Delta s)-\mathbf{T}(s)$ points to the inside of the curve, as does $d \mathbf{T} / d s$.

FIGURE 11.105

THEOREM 11.13 Tangential and Normal Components of the Acceleration

The acceleration vector of an object moving in space along a smooth curve has the following representation in terms of its tangential component a_{T} (in the direction of \mathbf{T}) and its normal component a_{N} (in the direction of \mathbf{N}):

$$
\mathbf{a}=a_{N} \mathbf{N}+a_{T} \mathbf{T}
$$

where $a_{N}=\kappa|\mathbf{v}|^{2}=\frac{|\mathbf{a} \times \mathbf{v}|}{|\mathbf{v}|}$ and $a_{T}=\frac{d^{2} s}{d t^{2}}$.

