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FIGURE 10.24
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FIGURE 10.25 [Cﬂ?dlﬂld r =1+ sin 3]
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Table 10.3
0 r=1+ sin 6
0 |
77 /6 3/2
/2 2
57/6 3/2
T ]
77 /6 1/2
3m/2 0
117/6 1/2
2T 1
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Table 13.3

Name Description Example
Cylinder {(r,0,2):r =a},a >0
Cylindrical shell {(r,0,2):0 <a=r=b}
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Table 13.3 (Continued)

Name Description
Vertical half plane {(r,8,2):6 = 6y}

&1

Il

=
e

Horizontal plane {(r,0,2):

Cone {(r.0,2):z=ar},a# 0

£
|
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FIGURE 13.48
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p = 2acos ¢
(a)

p=asec e

(b)
FIGURE 13.56
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Table 13.4
Name Description Example
Sphere, radius a, {(p.g.0):p=a},a=0
center (0,0, 0)
Cone {p.e.0)¢ = @o}.go # 0,7/2,7

Vertical half plane {(p e, 0): 0 = 8y}

(Continued)
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Table 13.4 (Continued)

Name Description Example

Horizontal plane, {(p,@.0):p = asece,0 = ¢ < 7/2)}

i=a

Cylinder, radius {(p,e.B):p =acsce,0 < ¢ < 7}

a=10

Sphere, radius a > 0, {(p,,0):p = 2acos¢,0 = ¢ = 7/2} *‘71
center (0,0, a)
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DEFINITION  Scalar Multiples and Parallel Vectors

Given a scalar ¢ and a vector v, the scalar multiple cv is a vector whose magnitude
is |c| multiplied by the magnitude of v. If ¢ > 0, then ¢v has the same direction as v.
If ¢ < 0, then ¢v and v point in opposite directions. Two vectors are parallel if they
are scalar multiples of each other.

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S|Ide 10 - 25



To add u and v, Triangle Rule J

use the ...
u-+v
v
v
/
u
FIGURE 11.8 (a) (b)
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Findingu —v=u+ (—v)
by Triangle Rule

[ Finding u — v directly )

FIGURE 11.9 (a)

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Sllde 10 - 27



DEFINITION Position Vectors and Vector Components

A vector v with its tail at the origin and head at (v,, v,) is called a position vector (or
is said to be in standard position) and is written (v, v,). The real numbers v, and v,
are the x- and y-components of v, respectively. The position vectors u = (u;, u,) and
v = (v, v,) are equal if and only if u; = v, and u, = v,.
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DEFINITION Magnitude of a Vector
Given the points P(x,, y;) and Q(x,, y,), the magnitude, or length, of
PO = (x, — x;, v, — y;), denoted | PQ|, is the distance between P and Q:

POl = V(x, — x> + (v, — 0’
The magnitude of the position vector v = (v, v,) is |v| = Vo + v3.
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FIGURE 11.14

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S|Ide 10 - 32



f cu = {cu,, cu,) for ¢ > 0 irﬁ'u = {cu,, cu,) for c < O]
\ = J \ =
VA YA
Clly e
| ew = ey, cuy) i,
2 I 2
il |
|
: u = (u, u,)
[ cu,
1 | >
! u, X
] 1 ::' — (('h‘l. ('IL,}
iy o =t Clh,, B
FIGURE 11.15 (a) (b)

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S|Ide 10 - 33



[ Coordinate ]

unit vectors

FIGURE 11.16
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u=—and —u = ——
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have length 1.
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FIGURE 11.18
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DEFINITION  Unit Vectors and Vectors of a Specified Length

. . . A :
A unit vector is any vector with length 1. Given a nonzero vector v, :I:ﬂ are unit
v

cv

vectors parallel to v. For a scalar ¢ > 0, the vectors £-——— are vectors of length ¢ par-

|v|
allel to v.
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Vectors 1n Three Dimensions
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DEFINTION  Magnitude of a Vector

The magnitude (or length) of the vector PTQ = (X2 — X, Y2 — V1,22 — Z1) is the
distance from P(x;, v, z1) to Q(x2, V2, 2):

|@| = \/(Iz —x1)*+ (=) + (2 — )
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DEFINITION Dot Product
Given two nonzero vectors u and v in two or three dimensions, their dot product is

u-v = |ul|v| cose,

where 6 is the angle betweenu and vwith 0 = 6 = 7 (Figure 11.44). If u = 0 or
v = 0, thenu-v = 0, and 0 is undefined.
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DEFINITION  Orthogonal Vectors

Two vectors u and v are orthogonal if and only if u-v = 0. The zero vector is
orthogonal to all vectors. In two or three dimesions, two nonzero orthogonal vectors
are perpendicular to each other.
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FIGURE 11.46
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THEOREM 11.1 Dot Product
Given two vectors u = (uy, Uy, uz) and v = (v, v,, v3),

u*v = H{U] + Hz’vg + H3’U3.
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THEOREM 11.2 Properties of the Dot Product
Suppose u, v, and w are vectors and let ¢ be a scalar.

l.a*v =v-u Commutative property
2. c(u+v) = (cu)-v=u-(cv) Associative property

J.u*(v+w)=u'v+u'w Distributive property
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DEFINITION (Orthogonal) Projection of u onto v
The orthogonal projection of u onto v, denoted proj,u, where v # 0, is

\l4

proj,u = |ul 0059(—).

v

The orthogonal projection may also be computed with the formulas

roj scal ( M ) (u*v)
ya = val | T v,
proj ™ vy

where the scalar component of u in the direction of v is

u-v
scal,u = |ul cos @ = I*E
v
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FIGURE 11.56
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DEFINITION  Cross Product

Given two nonzero vectors u and v in R, the cross product u X v is a vector with
magnitude
lu X v| = |ul||v|sin 6,

where 0 = 0 = 7 is the angle between u and v. The direction of u X v is given
by the right-hand rule: When you put the vectors tail to tail and let the fingers of
your right hand curl from u to v, the direction of u X v is the direction of your
thumb, orthogonal to both u and v (Figure 11.56). When u X v = 0, the direction
of u X v is undefined.
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fArea = base X height
= |u||v| sin 6
= |u X v|
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~

FIGURE 11.57
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THEOREM 11.3 Geometry of the Cross Product
Let u and v be two nonzero vectors in R°.

1. The vectors u and v are parallel (§ = Qorf = ) if and only ifu X v = 0.

2. If wand v are two sides of a parallelogram (Figure 11.57), then the area of the
parallelogram is
lu X v| = |ul|v] siné.
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THEOREM 11.4 Properties of the Cross Product
Let u, v, and w be nonzero vectors in R’, and let @ and b be scalars.

l.uXv=—(vXu) Anticommutative property
2. (all) X (bV) = ab(u X V) Associative property
J.uX (v+w)=(uXv)+ (uXw) Distributive property
4. (u +v) X w=(u X w) + (v Xw) Distributive property
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FIGURE 11.59
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THEOREM 11.5 Cross Products of Coordinate Unit Vectors
iXj=—-(jxi)=k jXk=—-(kXj =i
kXi=—(iXKk)=j iXi=jXj=kXk=0
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THEOREM 11.6 Evaluating the Cross Product
Letu = uyi + u,j + usk and v = v;i + v,j + vsk. Then,

i j k
u us|, u Us|, u u

u Xv-= Ly U, Uz = : 3l— ! 3J+ : 3k.
Uy Uy UV U3 UV V3
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24 .
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X
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FIGURE 11.66
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4 Equation of line €
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4
Variable point
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FIGURE 11.67 X
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2\
The curve
r(t) = (f(r), g(r), h(1))

fora=r=0>b

X

FIGURE 11.71
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DEFINITION Limit of a Vector-Valued Function

A vector-valued function r approaches the limit L as ¢ approaches a, written
lim r(¢) = L, provided lim [r(f) — L| = 0.
1—a

I—da

Slide 10 - 78
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11.6

Calculus of Vector-Valued Functions
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FIGURE 11.77
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DEFINITION Derivative and Tangent Vector

Letr(t) = f(r)i + g(¢)j + h(t)k, where f, g, and h are differentiable functions on
(a,b). Then r has a derivative (or is differentiable) on (a, b) and

v'(t) = f'(0)i+ g'(r)j + h'(1)k.

Provided r'(f) # 0,r'(¢) is a tangent vector (or velocity vector) at the point corre-
sponding to r(f).
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DEFINITION Unit Tangent Vector

Let r = f(r)i + g(t)j + h(t)k be a smooth parameterized curve fora =t = b.

The unit tangent vector for a particular value of 7 is

_r'(1)
T(t) = Ir’(r)l'

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
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FIGURE 11.80
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THEOREM 11.7 Derivative Rules

Let uw and v be differentiable vector-valued functions and let f be a differentiable
scalar-valued function, all at a point 7. Let ¢ be a constant vector. The following
rules apply.

d
1. E(C) =0 Constant Rule
2. %(u(r) + v(t)) =u'(t) + v'(1) Sum Rule
d
3. E(f(f)ll(t)) = f'(Hu(r) + f(H)u'(z) Product Rule
d
1. E(ﬂ(f(r))) =u'(f(1))f (1) Chain Rule
d

5. I (u(z)-v(t)) = ua'(t)-v(t) + u(r)-v'(z) Dot Product Rule

6. %(u(r) X v(t)) = u'(t) X v(t) + u(r) X v'(1) Cross Product Rule
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DEFINITION Indefinite Integral of a Vector-Valued Function

Letr = fi + gj + hkbeavector functionandletR = Fi + Gj + HK, where F,
G, and H are antiderivatives of f, g, and A, respectively. The indefinite integral of r is

/r(t) dt = R(t) + C,

where C is an arbitrary constant vector.,
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DEFINITION Definite Integral of a Vector-Valued Function
Letr(z) = f(¢)i + g(t)j + h(t)k, where f, g, and h are integrable on the interval

la, b].
lbr(r)a’r - [/:f(r)dr}i + [/:g(r)dr]j + [f:h(r)dr}k
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Motion 1n Space
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FIGURE 11.81
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FIGURE 11.82
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DEFINITION  Position, Velocity, Speed, Acceleration

Let the position of an object moving in three-dimensional space be given by
r(t) = (x(1), y(1), z(t)), fort = 0. The velocity of the object is

v(t) = r'(t) = (x'(1),y'(1), 2'(2)).
The speed of the object is the scalar function
VOl = V@) + y () + 2 ()

The acceleration of the objectis a(f) = v'(1) = r"(¢).
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[Circular motion: At all times a(f) = —r(f)]

and v(7) 1s orthogonal to r(r) and a(r).

FIGURE 11.83
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r Ny

Circular trajectory

r(r) = (A cos t, A sin 1)
r(t) = —al(r)

r(r) - v(t) =0

at all times

VA

=Y

FIGURE 11.86
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}!

On a trajectory on which |r(£)| 1S constant,
v is orthogonal to r at all points.

FIGURE 11.87
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Zh

r(t) = (3 cost, Ssint, 4 cost),
- forO0=t=2mw

1

s Ir(®)| = 5, for

O0<r=2m

FIGURE 11.88
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Gravitational force

N F = (0, —myg)

Initial velocity
v(0) = (up, v

Trajectory

Initial position
1 1(0) = (x, )

| >

0, X

FIGURE 11.89
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VA "Parabolic trajectory of baseball )
Time of flight 5.04 s

Range 403 ft

120+ .
kMax. height 103 ft

0 100 200 300 400 500 A

FIGURE 11.90
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trajectory

O

FIGURE 11.91
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VA Trajectories for various «
Maximum range occurs for o = 45°.

a=70°

100 =

a = 45°

I i
0 50 100 150 200 250

FIGURE 11.92
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11.8

Length of Curves
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FIGURE 11.95
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DEFINITION  Arc Length for Vector Functions

Consider the parameterized curve r(z) = (f(¢), g(t), h(t)), where f', g’, and h" are
continuous, and the curve is traversed once for a = t = b. The arc length of the

curve between (f(a), g(a), h(a)) and (f(b), g(b), h(b)) is

b b
L= [ V2 + g (1)} + h'(1)?dt = / v’ (1)] dt.
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11.9

Curvature and Normal Vectors
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THEOREM 11.9 Arc Length as a Function of a Parameter
Let r(z) describe a smooth curve for t = a. The arc length is given by

s(t) = flv(uﬂdu,

d
where |v| = |r’|. Equivalently, d—j = |v(¢)| > 0.1If |v(¢)| = 1 forallt = a, then

the parameter ¢ is the arc length.
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T(s + As)

arc length = s

T(s) T(s + As) — T(s)

large curvature

T(s + As)

FIGURE 11.102 (a)
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arc length = s

T(s + As) — Ti(s)

T(s)
,ﬂ small curvature

T(s + As)
(b)
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DEFINITION Curvature

Let r describe a smooth parameterized curve. If s denotes arc length and T = r'/|r’]|
dT

is the unit tangent vector, the curvature is k(s) = J
s
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THEOREM 11.10 Formula for Curvature

Let r(z) describe a smooth parameterized curve, where ¢ is any parameter. If v = r’
is the velocity and T is the unit tangent vector, then the curvature is

dT ! ()]

dt (1)

1

v

w(1)
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THEOREM 11.11 Alternative Curvature Formula
Let r be the position of an object moving on a smooth curve. The curvature at a
point on the curve is

_|a><v|

v[>

where v = r’ is the velocity and a = v’ is the acceleration.

K
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DEFINITION Principal Unit Normal Vector

Let r describe a smooth parameterized curve. The principal unit normal vector at
a point P on the curve at which k # 0is

N - dT/ds 14T
|dT/ds| K ds
In practice, we use the equivalent formula
dT/dt
N=-— "
|dT/dt|

evaluated at the value of ¢ corresponding to P.
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THEOREM 11.12 Properties of the Principal Unit Normal Vector

Let r describe a smooth parameterized curve with unit tangent vector T and princi-
pal unit normal vector N.

1. T and N are orthogonal at all points of the curve; that is, T(z) - N(z) = 0 at all
points where N is defined.

2. The principal unit normal vector points to the inside of the curve—in the direc-
tion that the curve is turning.

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley S|Ide 10 - 110




N

"Atall points
T| = IN| = 1.
and T+ N = 0.

. J

e ; S D
N points to the inside of the
curve—in the direction the

_curve Is turning.

FIGURE 11.104
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rrFor small As b

T(s + As) — T(s)
points to the inside of
kthe curve, as does d'T/ds. )

T(s)

T(s + As)

T(s)
4“3 + As) — T(s)

T(s + As)
FIGURE 11.105
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THEOREM 11.13 Tangential and Normal Components of the Acceleration
The acceleration vector of an object moving in space along a smooth curve has the
following representation in terms of its tangential component a; (in the direction
of T) and its normal component a,, (in the direction of N):

a = .{INN + ﬂTT,
la X V]| d*s

and dr = 5

where ay = :{[v|2 — vl dt
v
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. . 3
Tangential [Trajectory in R ]

component a,T a=aN+aT

Normal
component a, N

FIGURE 11.107
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