Worksheet on Polar, Cylindrical and Spherical Coordinates

1. Plot the following polar points.
(a)
$\left(2, \frac{\pi}{6}\right)$
(b) $\left(3, \frac{5 \pi}{6}\right)$
(c) $\left(-2, \frac{\pi}{3}\right)$
(d) $\left(2,-\frac{\pi}{3}\right)$
2. Convert the following rectangular points to polar coordinates.
(a)
$(1, \sqrt{3})$
(b) $(-1, \sqrt{3})$
(c) $(1,-\sqrt{3})$
(d) $(-1,-\sqrt{3})$
3. Convert the following rectangular points to cylindrical coordinates.
(a)
$(1,-1,3)$
(b) $(-2,-2 \sqrt{3},-1)$
4. Convert the following spherical points (ρ, φ, θ) to rectangular points (x, y, z).
(a) $\quad\left(1, \frac{\pi}{3}, \frac{\pi}{3}\right)$
(b) $\left(2, \frac{\pi}{6}, \frac{\pi}{2}\right)$
5. Write an equation that describes the equation in polar coordinates.
(a) $\quad x^{2}+y^{2}=4$
(b) $\quad x^{2}+y^{2}=4 y$
(c) $y=x$
(d) $\quad x-y=5$
6. Write an equation that describes the equation in cylindrical coordinates.
(a) $\quad x^{2}+y^{2}+z^{2}=1$
(b) $\quad z=\sqrt{x^{2}+y^{2}}$
(c) $\quad x^{2}+y^{2}+z^{2}=2 x$
7. Write an equation that describes the equation in spherical coordinates.
(a) $\quad x^{2}+y^{2}+z^{2}=1$
(b) $\quad z=\sqrt{x^{2}+y^{2}}$
(c) $\quad x^{2}+y^{2}+z^{2}=2 x$
